Эксперимент продолжается - Виктор Шаталов 3 стр.


Заметим сразу, что это не так просто набрать 67% очков среди тех, кто оказался лучшим в первых турнирах. Поутихли разговоры, почти исчезли "зевки" - отстаивали престиж. В трудных позициях защищались цепко, упорно, изобретательно. В этом не было ничего необычного. Удивляло другое.

В состязаниях по стоклеточным шашкам, требующих предельно напряженного внимания, глубокого анализа и сложных расчетов вариантов, на первых местах оказались слабые ученики. Как это объяснить? Возможно, игровые ситуации включают в действие какие-то скрытые резервы мышления. Предположение фантастическое, но проверить его необходимо. С этой целью проводится новая серия экспериментальных исследований. На уроках и после них физико-математические турниры (ФМТ). Шутливые, задорные, чаще всего скоротечные (реже - затяжные), они включали в себя разнообразные головоломки (особым успехом пользовались самоделки, выполненные из проволоки диаметром 4 мм, которую ни согнуть, ни разогнуть было невозможно, и потому ребята часто брали их домой - решали вместе с родителями), задачи по начальному моделированию, логические задачи на устойчивость внимания, ребусы, лабиринты, что не требовало предварительной подготовки и развитых вычислительных навыков. Для победы в такого рода турнирах нужны были только смекалка, упорство и поисковая дерзость. И снова невероятное: побеждали вчерашние тихони, аккредитованные "середнячки" и общепризнанные тугодумы.

В течение многих лет. наблюдения и исследования проводились и в средних, и в старших классах, и в массовой, и в вечерней школе рабочей молодежи. Результаты совершенно определенно говорили об одном и том же: природная одаренность сплошь и рядом никак не соотносилась со школьными успехами, отраженными в классных журналах и ведомостях. А однажды...

Несколько уроков подряд очень сложная проволочная головоломка переходила из рук в руки. За ее решение брались самые лучшие ученики, но безуспешно. И вот на одной из перемен несколько минут присматривавшийся к проволочным переплетениям Андрюша Сучков, один из самых слабых учеников класса, вдруг взял в руки головоломку и тотчас же разъединил ее детали, продемонстрировав тем самым великолепное пространственное воображение. Ведь весь процесс разъединения он представил мысленно! После секундного оцепенения одноклассники куда как более уважительно посмотрели на Андрея.

Итак, путь к развитию познавательной активности был нащупан. Но, возможно, есть способ стимулирования процессов восприятия и запоминания? Снова задача, которую нужно во что бы то ни стало одолеть. Ведь без освоения, например, математической азбуки - теорем, определений, законов действий, вычислительной техники - не постигнуть саму математику. Да и вообще любая творческая деятельность возможна только на базе диалектически усвоенных глубоких и прочных знаний.

"...Можно выделить три признака творческого акта:

а) необходимость предварительных знаний;

б) подсознательное ассоциирование далеких понятий;

в) критическая оценка полученного результата"1.

В каком же соотношении могут и должны находиться объемы информации, с одной стороны, получаемой учащимися в процессе обучения и, с другой надежно усваиваемой ими на промежуточных и завершающих этапах работы? И здесь нам придется вторгнуться в проблему, связанную с потенциальными возможностями мозга.

Неожиданный результат

В двух пятых классах объявили, что через две недели в актовом зале школы каждому ученику будет предоставлено право задать любой вопрос по теоретическому курсу математики любому ученику параллельного класса и соответственно каждому придется ответить на один вопрос ученика из другого класса. Повторяющихся вопросов не будет.

Поэтому для успешного участия в состязании необходимо иметь в запасе 10-15 предварительно подготовленных вопросов. За вопрос, на который не будет дан ответ, участник получает выигрышный балл, если он сам сможет ответить на свой вопрос. В противном случае выигрышный балл снимается. Индивидуальных зачетов не будет. Все выигранные баллы - в копилку класса.

Новизна состязания и коллективная ответственность за его результат это очень сильные стимулы. Две недели шуршат страницы учебников, две недели ребята консультируют и контролируют друг друга, радуются удачным находкам, готовят вопросы-ловушки, живут в напряженном ожидании предстоящего поединка и с удивлением начинают замечать, как с непринужденной легкостью воспроизводят формулировки правил, определений и математических законов даже самые безучастные молчуны. Выводы формул, доказательства теоретических положений и мелкие, казалось бы, уже давно позабытые следствия становятся день ото дня все более привычными и понятными.

Описывать сам ход игры, видимо, нет смысла, так как в дальнейшем она трансформировалась в опрос по листам группового контроля, но результаты ее казались тогда каким-то чудом: даже самые слабые ученики отлично помнили весь теоретический материал и бойко отвечали на разнообразные вопросы. Сегодня этим уже никого не удивишь. Учащиеся экспериментальных классов за один учебный год изучают программу по математике IV и V классов, без запинки отвечая на сотни вопросов. Проходит еще один учебный год, и ребята с тем же успехом осваивают учебные программы VI и VII классов, не забывая при этом ничего из всего изученного за предыдущий учебный год.

Такая интенсификация учебного процесса достигается благодаря новой методической системе обучения, создаваемой и совершенствуемой вот уже в течение 30 лет. Новая методика позволила учить не только быстрее, но и лучше. И это "лучше" касалось не только глубины и прочности знаний, но и их качества, а самое главное - мотивации учения, отношения детей к самой учебной деятельности как к увлекательному труду, доставляющему удовольствие и радость развития ума, всех внутренних сил.

ПРОТИВОСТОЯНИЕ

Давайте зададимся таким вопросом: зависят ли результаты работы школы учебные и воспитательные - от места ее расположения, от того, какой вид открывается из ее окон? А ведь это та самая окружающая среда, которая или облагораживает, или незаметно, изо дня в день подавляет, угнетает человека, особенно ребенка. Вот, например, донецкие школы No 2, 3, 13, 15, 22, 33, 53, 95 и ряд других выходят фасадами на самые оживленные магистрали города. Сотни тысяч машин, трамваев и троллейбусов проносятся мимо окон этих школ, загрязняя воздух пылью и выхлопными газами, терзая слух раздражающим гулом и дребезжанием стекол. Самое поразительное, что все классные комнаты обращены к дорогам, а рекреации, где ребята проводят короткие шумные перемены,- к скверам и жилым кварталам. Кто спроектировал такую вне здравого смысла педагогическую абракадабру? А ведь подобное бездумье типично не только для Донецка. Скажут: зачем здесь об этом?

Речь-то вроде бы о методике... Да, о методике. Но методика эта зачиналась в стенах средней школы No 6, расположенной на перекрестке бывшего Николаевского проспекта и 9-й линии.

Хмурое, казарменного типа здание, сооруженное на пожертвования горожан еще до революции и известное как Братская школа, возвышалось своими тремя этажами над окружающими халупами, из которых в основном и состояла бывшая Юзовка. Булыжный, уходящий под уклон к реке Кальмиусу Николаевский проспект был одной из самых шумных магистралей города и одновременно дорогой на городское кладбище.

Назад Дальше