Суперсила - Девис Пол 14 стр.


Такое представление становится еще более неприемлемым, если обратиться к живым существам: попытка свести все живое лишь к движению мириадов атомов, подчиняющемуся воле слепого случая, более чем что либо порождает взгляд на науку как на бездушное, негуманное занятие.

Новая физика особенно резко контрастирует с подобным традиционно редукционистским подходом. Квантовый подход решительно отвергает лапласовскнй детерминизм, отрицая, что мир можно объяснить лишь как сумму его составных частей. В следующей главе мы увидим, что две изолированные частицы, разделенные большим расстоянием, тем не менее ведут себя согласованно. В самом общем случае при любом измерении или наблюдении в квантовой физике сущность субатомной частицы нельзя рассматривать в отрыве от ее окружения. В эксперименте Юнга с двумя щелями поведение столь крошечной частицы, как электрон, при прохождении сквозь экран, зависит от того, открыты ли одна или обе щели. Электрон каким-то таинственным способом получает информацию о сравнительно обширной окрестности и ведет себя соответствующим образом. Аналогично направление ориентации спина электрона неотделимо от выбранного экспериментатором способа измерения. Макромир и микромир оказываются тесно связанными. Не стоит надеяться, что полного понимании строения вещества удастся достичь, зная лишь свойства его составных частиц. Только подход к системекак целому дает возможность познания свойств микромира. Большое и малое сосуществуют. Одно не исчерпывает другого, как равным образом второе не “объясняет” полностью первого.

Один из сильнейших ударов по редукционистской концепции нанес разум. Пытаясь свести все системы к функционированию ее более простых компонентов, некоторые ученые пришли, к убеждению, что разум — это активность головного мозга, которая в свою очередь представляет собой не что иное, как серию электрохимических процессов, сводимых к движению электронов и ионов. Столь крайне упрощенный материалистический взгляд сводит мир человеческих мыслей, чувств и ощущений лишь к чисто внешнему проявлению.

В отличие от этого новая физика восстанавливает центральной положение разума в природе. Квантовая теория в обычной интерпретации приобретает смысл лишь с введением того или иного наблюдателя. Акт наблюдения в квантовой физике является не побочным обстоятельством, а средством получения информации, уже существующей во внешнем мире; наблюдатель весьма основательно вмешивается в микромир, и описание, содержащееся в уравнениях квантовой физики, явно включает акт наблюдения. Наблюдение вызывает определенное изменение в физической системе. Стоит только “взглянуть” на атом, как тот совершает характерный переход, не воспроизводимый обычным физическим взаимодействием. Здравый смысл, возможно, и сложил оружие перед лицом новой физики, но во Вселенной, какой рисуют ее последние достижения физической науки, снова нашлось место для человека.

3. Действительность и мир квантов

Лабиринт парадоксов

Летом 1982 г. в Парижском университете был проведен исторический эксперимент. Французский физик Ален Аспек и его сотрудники решили проверить, не удастся ли им “перехитрить” квант. На карту были поставлены не только наиболее плодотворная научная теория, но и сама основа того, что мы считаем физической реальностью.

Как и многие решающие эксперименты в физике, парижский эксперимент восходил к парадоксу, который озадачивал и интриговал физиков и философов на протяжении почти половины века. Речь идет об одной из принципиальных особенностей квантовой физики — о неопределенности.

Знаменитый принцип неопределенности Гейзенберга вынуждает вносить существенные поправки в простую, построенную на интуиции картину мира атомов, согласно которой частицы под действием сил движутся по вполне определенным траекториям. В действительности частица, например электрон, движется сложным, почти непредсказуемым образом, и проследить за ее движением в деталях или хотя бы дать его описание невозможно.

До появления квантовой теории физическую Вселенную рассматривали как огромный часовой механизм, ход которого до мельчайших деталей неукоснительно следовал безупречной логике причины и следствия, воплощенной в законах механики Ньютона, Разумеется, законы Ньютона и поныне справедливы для описания большинства явлений в окружающем нас мире. Они направляют пулю к цели и заставляют планеты двигаться точно по орбитам. Но, как мы теперь уже знаем, в масштабах атома многое обстоит совсем иначе. На смену знакомому упорядоченному движению макроскопических тел приходит беспорядок и хаос. Привычные твердые тела на поверку оказываются призрачной мозаикой, образованной всплесками энергии. Квантовая неопределенность убеждает нас, что невозможно всегда все знать о частице. Если, фигурально говоря, вы попытаетесь “пришпилить” частицу к определенному месту, она ускользнет от вас.

Эта неуловимость квантовых частиц доставила немало хлопот физикам при построении квантовой теории. В 20-х годах нашего столетия новая квантовая механика выглядела лабиринтом парадоксов. Хотя Вернер Гейзенберг и Эрвин Шрёдингер были главными строителями квантовой теории, ее интерпретацию предложили Макс Борн и особенно Нильс Бор. Датский физик Бор первым осознал во всей полноте, что квантовая теория в той же мере применима к веществу, как и к излучению, и в последующие годы стал ведущим авторитетом и лидером среди физиков в области концептуальных основ квантовой механики. Институт Бора в Копенгагене был центром исследований по квантовой физике на протяжении более чем десятилетия. Однажды Бор заметил своим коллегам: “Если у человека при первом знакомстве с квантовой механикой голова не идет кругом, то он не понимает в ней ничего”. В своей книге “Физика и философия” Гейзенберг вспоминает о первых мучительных сомнениях по поводу смысла новой квантовой механики:

Я вспоминаю дискуссии с Бором, длившиеся за полночь, которые приводили меня почти в отчаяние. И когда я после таких обсуждений отправлялся на прогулку в соседний парк, передо мной снова и снова возникал вопрос:действительно ли природа может быть столь абсурдной, какой она предстает перед нами в этих атомных экспериментах?

Самым крупным оппонентом квантовой механики был Эйнштейн. Хотя ему самому довелось приложить руку к формулировке квантовой теории, он никогда полностью не разделял ее идей, считая квантовую теорию либо ошибочной, либо в лучшем случае “истинной наполовину”. Известно его изречение: “Бог не играет в кости”. Эйнштейн был убежден, что за квантовым миром с его непредсказуемостью, неопределенностью и беспорядком скрывается привычный классический мир конкретной действительности, где объекты обладают четко определенными свойствами, такими, как положение и скорость, и детерминировано движутся в соответствии с причинно-следственными закономерностями. “Безумие” атомного мира по утверждению Эйнштейна, не является фундаментальным свойством. Это всего лишь фасад, за которым “безумие” уступает место безраздельному господству разума.

Эйнштейн пытался найти это фундаментальное свойство в нескончаемых дискуссиях с Бором — наиболее ярким выразителем взглядов той группы физиков, которые считали квантовую неопределенность неотъемлемой чертой природы, не сводимой к чему-либо другому.

Назад Дальше