Журнал Компьютерра - 30 от 21 августа 2007 года - Компьютерра Журнал 619 23 стр.


Он побеседовал со мной, сидя на скамейке в своем саду, а потом в этакой перипатетической манере продолжил разговор в течение похода в продуктовый магазин и обратно. В ходе этой аудиенции он не стал мне объяснять множество фактов-следствий, а изложил мне их причины, главные принципы. В какой-то степени эти принципы звучат мифологически, но это не мешает использовать их в качестве фундамента для выстраивания фактов. Итак, есть атомы, состоящие из ядер с электронными оболочками. Эти атомы стремятся довести свои электронные оболочки до совершенства, до полноты. Тем, у кого до совершенства не хватает немного, и у кого сильно` взаимодействие ядра с наружными электронами, проще дополнить то, что у них есть. Имеющим мало и плохо удерживающим – проще отдать. Дополнять можно, объединив или отобрав… Сравнение «силы» стремления ядра обладать электронами объясняет, какие реакции идут, а какие – нет. А то, сколько электронов принимают или отдают атомы, определяет соотношения реагентов и формулы получающихся веществ.

А что, моя школьная химичка этого не знала? Конечно, знала. Но у нее не было повода доверительно поговорить с отстающим учеником: она была занята отработкой целей и задач конкретных уроков. Сегодня надо выучить, что эта реакция идет при таких-то условиях, а та – при сяких, неужели это трудно запомнить? А потом ситуация изменилась, преподавать химию к нам в класс пришел биолог, и все стало легко и понятно.

Вы считаете, мне просто не повезло с первым учителем химии? Но похожие вещи были и с математикой. Математичка, считавшая меня тупым, требовала, чтобы я запомнил правила действий с такими и сякими функциями, считая, что тут нечего рассусоливать. Тогда я шел к физику, который оценивал меня, пожалуй, незаслуженно высоко. Физик объяснял мне, что производная – это скорость, а интеграл – это площадь под кривой, и показывал, при решении каких естественных задач полезны эти функции. Получив излишние, с точки зрения математички, пояснения, я кое-как часто не так, как требовала методика)решал предлагавшиеся задачи. Точно не знаю, улучшилась ситуация с преподаванием химии, математики и других наук в школе по сравнению со зрелым застоем или ухудшилась; по аналогии с биологией и по снижению уровня подготовки студентов предполагаю, что ухудшилась [И еще один фактор. Из трех упомянутых здесь хороших учителей один – на том свете, а двое, как евреи, вдалеке от постсоветского пространства].

Владение материалом состоит из двух взаимодополнительных, но независимых компонентов – знания фактов и понимания взаимосвязей. Знание без понимания мертво. Понимание не может не опираться на знание, но, раз возникнув, стремительно раздвигает его горизонт…

Увы, тут встает одна печальная проблема. К пониманию способны не все. Почему в массовой школе совершенствуют знание, а не понимание? Потому что с таким обучением справятся (кто лучше, кто хуже – в зависимости от прилежности и развития памяти)практически все. Изучение с опорой на понимание недемократично, ибо необщеприемлемо. Это то, что можно позволить лишь в какой-нибудь «элитарной» школе [Слово «элитарной» взято в кавычки, потому что у нас элитой себя считают две категории людей – «звезды» (шоумены &шоувумены) и нувориши].

Как бы я преподавал химию? В «массовой» школе – ума не приложу. А в настоящей, где детей учат всерьез, попробовал бы применить идею, которую сейчас со своими коллегами развиваю в курсе экологии, одной из интегрирующих естественных наук [Я писал об этом в очерке "Инновации и реальность" в КТ # 664].

Логика там такова: как понять принципы функционирования нашей биосферы? Сконструировав (в компьютерной модели) искусственную биосферу на какой-то необитаемой планете!

Так вот, наверное, если бы я размахнулся на инновации в преподавании химии, я бы предложил детям разработать альтернативную химию. Так, мне и самому было бы интересно построить химию для двухмерного пространства, иным стабильным количеством «2D-электронов» в оболочках «2D-атомов», а значит, и иными «2D-элементами», иной таблицей "2D-Менделеева [С длиной периодов, зависящей от количества электронов в каждом слое электронной оболочки]", иными валентностями и иными формулами «2D-веществ». Что самое интересное, и в этой химии будут возможны окисление и восстановление, будут свои металлы и неметаллы, кислоты и щелочи… Вероятно, чтобы разработать такую «2D-химию», ученику понадобится разобраться в «3D-химии» так, что он ее начнет по-настоящему понимать. А авторам такого учебного курса понадобится решить нетривиальные задачи по придумыванию и программированию среды, которая позволила бы это сделать. Ну а «4D-химию» вынесем на факультатив для особо одаренных.

Этими методами мы объясним существенную часть общей и неорганической химии. А как быть с органикой? Определить, какой «2D-элемент» будет выполнять функции углерода. Определить, сколько он будет образовывать ковалентных связей (стоп, тут нет особого выбора: четыре – не будет новизны, две – не будет нужного разнообразия соединений; значит, три). Такая "2D-органическая химия" будет беднее обычной, но позволит быстро разобраться со всеми классами соединений (и позволит потом задаться вопросом о том, какие группы веществ из «3D-органики» невозможны в "2D"). А на каких «2D-соединениях» запустим матричный синтез?

Сколько времени должен занимать такой курс? Не более года, а может, всего и половину. Спорим, что будучи правильно проведен, он сократит время, необходимое для изучения основной, «нормальной» химии? Увы, программу придется менять. Что скажут контролирующие органы? Страшно подумать…

Потянет среднестатистический школьник такой курс? Наверное, нет. Но это не означает, что такой курс не нужен – кто-то с ним справится. Прочтет такой курс среднестатистический учитель? Нет. Но какаято часть учителей, особенно молодых да компьютеризованных, заинтересуется и справится. А что предложить "широким массам"? Не знаю. Возможно, занимательные и поучительные рассказы о свойствах веществ и материалов. Так, по крайней мере, честнее – есть надежда, что учебный материал будет усвоен. Может, тогда «понимательная» химия станет престижной, и новые русские будут добиваться, чтобы их дети учили именно ее. Увы, тут встает проблема из области социальной инженерии. Как сделать так, чтобы обучение, основанное на понимании, не подгребла под себя наша «элита», отбирая учеников по статусу или богатству родителей? Вероятно, это тема отдельного разговора. Думаю, что решение состоит в том, чтобы сделать это обучение действительно требующим хорошего развития мозгов, и в том, чтобы финансово заинтересовать учебные учреждения в увеличении числа учеников, успешно осваивающих такую «понимательную» программу.

Что там на очереди? Физика? Жаль, космологию в школе не учат!

Дмитрий Шабанов

ВМЕСТО ЗАКЛЮЧЕНИЯ

Подводя некоторый итог, замечу, что вопросов здесь поставлено много больше, чем дано ответов. Вопросы эти сложные и содержательные, и сформулировать их – уже очень важно. Мне кажется очень правильным, что в этой переписке затрагивались проблемы «обычных» средних школ, а не специализированных «элитных» учебных заведений – и «простых» школьников, а не только "самых способных". В такой постановке мы говорим о будущем всего нашего общества, и поиск решений здесь возможен только в ходе широкого обсуждения, сильно выходящего за рамки соответствующих профессиональных сообществ.

Назад Дальше