Диссертация Рассеянного Магистра (Рассеянный Магистр - 1) - Левшин Владимир Артурович 18 стр.


Просто муху можно условно принять за точку.

- Смотря какую муху! - не унимался Нулик.

- Прошу прекратить прения, - сказал Олег. - Переходим к вопросу о волшебных ножницах.

Сева поднял руку:

- Ножницы не сработали потому, что Магистр не знал, что такое "пи". По его мнению, греческой буквой "пи" обозначают 180 градусов, а на самом деле...

- На самом деле буквой "пи" обозначают отвлеченное число, - перебил Нулик. - Это и я знаю. Оно равно... равно...

- Президент хочет сказать, что число "пи" равно отношению длины любой окружности к ее диаметру, - подсказал Олег.

Нулик важно кивнул:

- Вот именно.

- А еще он хочет сказать, что отношение это равно приближенно трем целым и четырнадцати сотым, - насмешливо сказала Таня.

- Нечего подшучивать, - обиделся Нулик. - Я и вправду это хотел сказать.

Олег примирительно погладил его по плечу:

- Хитрюга! А знаешь ли ты, что еще Архимед нашел, что длина окружности относится к своему диаметру, как 22/7? И отношение это точнее, чем 3, 14... Ладно, ладно, не дуйся. Скажи-ка лучше, на сколько же градусов должен был Магистр раскрыть ножницы, чтобы они сработали?

- Надо было 180 разделить на 3, 14, - сказал президент, ничуть не растерявшись. - Получится примерно 57 градусов 17 минут 45 секунд. А вовсе не 1 градус, как это думал Магистр.

- Умница, - похвалила Таня. - Добавь еще, что угол этот называется радианом.

- Да, да, - подтвердил Нулик, - градианом.

Никак не пойму, чего больше в этом ребенке - остроумия или невежества?

После небольшого перерыва мы перешли к тому вопросу, который задал себе наш рассеянный ученый в Музее самообслуживания: почему на медалях с каждой стороны изображены разные ученые? Но если Магистра это озадачило, то меня нисколько.

Я начал свой рассказ с медали, на которой изображены Эвклид и Лобачевский.

Великий древнегреческий математик Эвклид жил в Александрии в годы царствования Птолемея I, в начале III века до нашей эры. В тринадцати томах своего знаменитого труда "Начала" Эвклид изложил основы геометрии, той самой науки, которую изучают в школе. Школьники хорошо знают, как порой сложны бывают доказательства теорем. Вот и царь Птолемей тоже спрашивал Эвклида, не может ли он упростить свои рассуждения и пойти по более легкому пути? Говорят, будто Эвклид ответил на это, что в геометрии нет царских дорог.

В основу геометрии Эвклид положил несколько постулатов, иначе говоря, аксиом. А аксиома, как известно, - это то, что принимается без доказательства. Так вот, с помощью эвклидовых аксиом можно доказать любую геометрическую теорему.

Но есть среди этих аксиом одна, пятая по счету, которая не столь уж бесспорна, чтобы принимать ее без доказательства. С другой стороны, доказать ее не смог пока никто. Так же, впрочем, как и опровергнуть. Но самое главное, что многие теоремы геометрии Эвклида могут быть доказаны и без этой аксиомы.

Что же утверждает Эвклид в своем пятом постулате? Он утверждает, что через какую-либо точку можно провести только одну прямую, которая не пересекалась бы с другой прямой, то есть была бы ей параллельна. И с первого взгляда действительно кажется, что иначе и быть не может.

Но вот в XIX веке другой великий математик, профессор Казанского университета Николай Иванович Лобачевский, дерзнул выдвинуть другой постулат, прямо противоположный эвклидовому: через любую точку можно провести не одну, а сколько угодно прямых, которые не пересекались бы с другой прямой. Все эти прямые он тоже назвал параллельными.

Невероятно? Противоречит здравому смыслу? Но всегда ли следует этому здравому смыслу доверять? Бывает, что он нас и подводит. Многие открытия были сделаны только потому, что ученые сумели пойти против привычных, общеизвестных, общепринятых истин, которые вовсе не всегда так уж безупречны и неуязвимы.

Так вышло и с постулатом Лобачевского: он положил начало новой геометрии, которую, в отличие от эвклидовой, стали называть неэвклидовой. И хотя сам Лобачевский называл свою геометрию воображаемой, его "воображаемая" геометрия нашла огромное практическое применение в современной физике.

- Надеюсь, теперь вам ясно, - заключил я, - почему Эвклид и Лобачевский оказались на двух сторонах одной медали?

Ребята молча кивнули.

- Прекрасно. Тогда обратимся к другой паре: Птолемей - Коперник.

Древнегреческий астроном Клавдий Птолемей (не смешивайте его, пожалуйста, с царем Птолемеем) жил во II веке нашей эры. Астрономия того времени считала, что Земля неподвижна, а все планеты, Луна и Солнце обращаются вокруг нее.

Птолемей тоже разделял эту неверную точку зрения и все же умудрился с помощью сложнейших геометрических построений достаточно точно рассчитать движение планет по небу. Его вычислениями и таблицами пользовались астрономы в течение многих столетий. И только в середине XVI века великий польский астроном Николай Коперник создал новую систему мироздания, поместив в центре ее не Землю, а Солнце.

Коперник буквально перевернул систему Птолемея, поставил ее с головы на ноги. Он утверждал, что не Солнце обращается вокруг Земли, а Земля и все другие планеты обращаются вокруг Солнца. К сожалению, Коперник не до конца разобрался в строении Вселенной (да и можно ли вообще разобраться в этом до конца?). Он считал, что Солнце - не только центр нашей Солнечной системы, но и центр всей Вселенной, а звезды прикреплены к небесному куполу и вместе с ним обращаются вокруг Солнца.

С тех пор геоцентрическая система Птолемея уступила место гелиоцентрической системе Коперника - системе, где в центре не Земля (по-гречески "гео"), а Солнце ("гелиос").Но на самом деле Солнце - не центр Вселенной, а всего лишь маленькая звездочка среди миллиардов других звезд. Звезды эти объединяются в одно общее семейство, которое называется Галактикой. А таких галактик тоже великое множество. И все они составляют новое, еще более обширное семейство - Метагалактику. Но и это еще не конец...

Ясно, что всего этого Коперник в то далекое время знать не мог. Так что не будем предъявлять к нему непосильных требований. Вполне достаточно и того, что он сделал. И хотя его представление о Вселенной прямо противоположно Птолемееву, нельзя отрицать, что учения Птолемея и Коперника - две стороны одной медали. Кто знает: не было бы Птолемея, может быть, не было бы и Коперника!

- Э, нет! - не согласился со мной Сева. - Была бы Вселенная, а Коперник найдется!

- Перейдем к третьей медали, - продолжал я, - Ньютон - Эйнштейн.

Если в XVI веке Коперник установил, что Земля и планеты движутся вокруг Солнца, а в XVII веке немецкий астроном Иоганн Кеплер открыл законы этого движения, то в конце того же XVII века гениальный английский ученый Исаак Ньютон завершил их труды. Ньютон объяснил, почему планеты движутся именно так, а не иначе. Он открыл закон всемирного тяготения, то есть доказал, что все тела взаимно притягиваются. И еще он установил, что притягиваются они тем сильнее, чем массивнее, и тем меньше, чем дальше друг от друга. Если, например, расстояние между двумя телами увеличить вдвое, то сила их взаимного притяжения уменьшится, только не вдвое, а вчетверо, то есть в два в квадрате раза. Иначе говоря, сила притяжения зависит от квадрата расстояния между телами.

Ньютон открыл и много других законов. Он создал новую небесную механику. Он доказал, что все тела движутся по одним и тем же законам: и падающее яблоко, и хвостатая комета.

Открытие Ньютона было величайшим научным достижением.

Назад Дальше