А чтобы знать, надо иметь приборы, способные дать необходимые сведения.
Давно прошли те времена, когда индикатором токсичности (ядовитости) газовой среды, окружающей человека, служила клетка с канарейкой. Ни поведение птички, ни даже ее гибель ничего нам не скажут о составе смеси газов и о концентрации примесей. Химия физическими методами - так можно охарактеризовать общую тенденцию в развитии способов анализа воздуха в отсеках подводного корабля.
Химический состав газов, компоненты воздуха ныне определяют на основе физических свойств атмосферы отсеков. Водород, например, выявляют по изменению теплоемкости смеси газов, в которую он входит, а кислород - по изменению ее магнитных свойств: ведь кислород - парамагнетик. Приборы инфракрасной спектроскопии сообщают об окиси углерода и углекислом газе. Система очистки воздуха на подводной лодке стала ныне сложным комплексом, включающим немало приборов контроля, основанных на разных принципах действия.
Наиболее перспективным способом определения углеводородов (а их в воздухе подводных лодок выявлено великое множество) зарубежные специалисты считают газовую хроматографию, основанную на известном физическом явлении: различные газы адсорбируются (поглощаются) активными веществами с разной скоростью. Поэтому, вместе начав путь по хроматографической колонке, заполненной таким веществом, газы постепенно разделяются, как бегуны "растягиваются" на длинной дистанции. Первыми до противоположного конца колонки "добегают" те газы, которые плохо адсорбируются активным веществом, а последними те, что адсорбируются лучше всех. Специальные детекторы, связанные с самописцами, определяют вид и количество примесей по изменению теплоемкости или показателя преломления, по взаимодействию с реактивами или по другим свойствам.
С помощью газовой хроматографии выявляют многие примеси в воздухе отсеков и ведут с ними последовательную и беспощадную борьбу.
НАВИГАЦИЯ И СВЯЗЬ
В длительном плавании под водой или подо льдом средства навигации корабля и связи с внешним миром приобретают первостепенное значение. В таких условиях для определения перед пуском баллистической ракеты местоположения лодки в океане точность обычных штурманских приборов оказалась недостаточной. Мало того, магнитные и даже обычные гироскопические компасы в околополярных районах вообще не дают сколько-нибудь надежных показаний. На Северном полюсе стрелки сходят с ума: ведь кругом юг! Подводную и подледную навигацию атомных лодок в любых широтах сейчас обеспечивают корабельные инерциальные навигационные системы.
Как сообщает иностранная печать, основное отличие корабельной инерциальной системы от аналогичной ракетной состоит в том, что она должна измерять очень малые ускорения в трех взаимно перпендикулярных плоскостях в течение длительного времени, а это представляет большую трудность. Постепенно в приборах инерциальной системы накапливается ошибка, достигающая при длительном подводном плавании значительной величины.
Чтобы повысить точность определения места, на зарубежных лодках прибегают к дублированию: инерциальные системы корректируют друг друга. Кроме того, применяют астро - и радиокоррекцию, эхолоты и другую аппаратуру, позволяющую периодически выверять инерциальные системы. Все эти приборы объединены в навигационный комплекс, управляемый универсальной электронной вычислительной машиной.
На подводных лодках, предназначенных для арктического плавания, кроме эхолотов, измеряющих акустическим способом глубину моря под килем, устанавливаются эхоледомеры. Эти приборы работают на том же принципе. Они записывают на ленте положение верхней и нижней кромок льда, фиксируя этим его толщину.
На иностранных лодках поворотная, дистанционно управляемая телевизионная установка, размещенная в носовой части, помогает ориентироваться под водой. Имеются и подводные прожекторы. С помощью всей этой аппаратуры и гидролокаторов подводные лодки, плавая подо льдом, могут уклоняться от столкновения с айсбергами, находить разводья и полыньи, выбирать места для всплытия и "приледнения".
Для связи на УКВ, KB и в промежуточном диапазоне антенна подводной лодки должна находиться над водой. В зарубежных флотах специальные выдвижные устройства, антенные буи, выпускаемые лодкой из подводного положения, расширяют возможности радиосвязи. Они позволяют также по сигналам искусственных спутников Земли (ИСЗ) определять место нахождения корабля с высокой точностью, не всплывая в надводное положение.
На относительно небольших глубинах используется свойство сверхдлинных волн проникать в приповерхностный слой воды. Связь на СДВ-диапазоне (сверхдлинноволновом) находит широкое применение в иностранном подводном флоте. Теперь лодки получили возможность принимать (и только принимать) радиограммы, оставаясь на безопасной глубине. Для передачи же донесений они по-прежнему вынуждены подвсплывать на перископную глубину и выдвигать антенну.
На большой глубине основным источником информации об окружающей обстановке по-прежнему остается гидроакустика.
Еще в годы Второй мировой войны было обнаружено сверхдальнее распространение звука в океане при взрывах на определенной глубине. Оказалось, что дальше всего распространяется звук в тех слоях, где его скорость минимальная. Эти слои, в которых происходит наименьшее рассеивание энергии при распространении звука, называют подводными звуковыми каналами. Глубина их залегания колеблется. Так, в Атлантическом океане ось подводного звукового канала в северной части лежит на глубине 700-900 метров. Взрыв заряда весом всего в 2,7 килограмма в таком канале может быть услышан на расстоянии 5700 километров. Считается, что явление подводной звуковой сверхпроводимости может быть использовано для связи подводных объектов не только между собой, но и с базами.
РАКЕТА ВЗМЫВАЕТ ИЗ-ПОД ВОДЫ
Для начала рассмотрим как запускаются ракеты с субмарин.
Перед запуском в стартовой шахте повышают давление настолько, чтобы оно сравнялось с давлением воды за бортом, и открывают наружную прочную крышку. Лишь тонкая диафрагма из пластиката отделяет в этот момент ракету от забортного пространства. Сжатым воздухом, паром или парогазом под давлением свыше 300 атмосфер ракета выталкивается из шахты. Прорвав диафрагму, она проходит сквозь толщу воды и вылетает в воздух.
Двигатель первой ступени ракеты начинает работать уже в воздухе на высоте 15-25 метров. Приняв строго вертикальное положение, ракета разгоняется до необходимой скорости и переходит на заданную траекторию. Когда отработают и отделятся от ракеты двигатели первой ступени, а затем и второй, ракета переходит на неуправляемый полет по баллистической траектории. Дальность стрельбы ракетами, например, типа "Поларис А-3" составляет 4,6 тысячи километров, а мощность боевой части - 0,65 мегатонны. Однако этим американские конрукторы не удовлетворились. Большинство ракетных лодок уже перевооружены на ракеты "Посейдон" с удвоенной точностью стрельбы и многозарядной боевой частью вдвое увеличенного веса. Каждый из десяти ее зарядов направляется к своей индивидуальной цели. Число ракет на каждой лодке доведено до 24. Таким образом повысилась в несколько раз эффективность ракетного удара из-под воды.
Кроме баллистических ракет, на подводных лодках используются крылатые ракеты тактического и стратегического назначения.