Нейтронная звезда может иметь радиус меньше, чем радиус такой последней устойчивой орбиты, т. е. диск также может не доходить до поверхности. Зато сама поверхность видна! Она твердая, и мы можем наблюдать ее, т. е. изучать плотную материю в сверхсильном гравитационном поле. Нейтронные звезды дают возможность изучать практически всю физику (электродинамику, гидродинамику, ядерную физику и т. д.) на фоне сильнейшей гравитации. И все это благодаря астрономическим наблюдениям, которые становятся все лучше. Ведь мы живем в счастливое время, когда каждые 10–20 лет можно получать инструменты во всех диапазонах спектра, превосходящие своих предшественников на порядок по всем параметрам. Кроме их стоимости: она остается примерно такой же. Более того, мы осваиваем все новые и новые методы наблюдений (гравволны, нейтрино). И пытаемся заглянуть в недра компактных объектов.
Например, сверхтекучая жидкость вращается не так, как обычная. Если вы возьмете стакан со сверхтекучей жидкостью и начнете его крутить, то жидкость как целое вращаться не будет, а в жидкости возникнут квантованные вихри. Это, кстати, хорошо изучено в лабораториях. В Интернете можно посмотреть замечательные ролики, где показано, как возникают эти вихри. Нейтронная звезда работает в некотором смысле как такой стакан. Есть большая нейтронная звезда, у нее есть совсем не сверхтекучая кора плюс еще какие-то внутренние слои, содержащие заряженные частицы, которые связаны с корой. Такими частицами могут быть, например, те же самые протоны. Но вдобавок к этому в коре могут существовать сверхтекучие нейтроны. Тогда, с одной стороны, основная масса звезды вращается как единое целое, а с другой – сверхтекучая нейтронная жидкость внутри звезды крутится совсем по-другому: она образует внутри себя вихри. И вращательные свойства сверхтекучей жидкости и всего остального могут быть разными.
О глитчах мы уже упоминали в этой книге. Но есть еще один феномен, который пока мы обходили стороной. Это прецессия. Если взять волчок и закрутить его неточно вдоль оси симметрии, то он будет не только крутиться, но его ось будет совершать медленное периодическое движение (с периодом намного больше периода вращения) вокруг направления вращения.
Прецессирует ось Земли. Могут прецессировать и нейтронные звезды. Но тут есть одна проблема. Если в коре есть сверхтекучая нейтронная жидкость, то в ней есть вихри. И каждый такой вихрь работает как маленький гироскоп. То есть его ось очень трудно заставить изменить свое направление (поэтому гироскопы и используют в системах ориентации ракет и спутников). Прецессия хочет заставить вихри повернуться, а они сопротивляются. Это может привести к тому, что прецессия, аналогичная той, что мы видим у волчка, у нейтронных звезд наблюдаться не будет.
Наблюдения пока не могут внести решающую ясность. Изучая пару тысяч радиопульсаров, астрономы наткнулись всего лишь на пару случаев поведения, которое в принципе можно описать с помощью прецессии. Еще пара примеров есть в тесных двойных системах. Однако массового проявления прецессионного движения не видно. Теоретики продолжают пытаться разобраться в том, как эти данные можно совместить с нашим представлением о поведении сверхтекучих жидкостей в недрах компактных объектов.
В лабораториях мы не можем подобраться к таким экстремальным параметрам. Самое большее, что мы можем сделать в лабораториях, – это разогнать ядро на ускорителе и ударить его о стенку или о другое летящее навстречу ядро.
Самое большее, что мы можем сделать в лабораториях, – это разогнать ядро на ускорителе и ударить его о стенку или о другое летящее навстречу ядро. На короткое время у нас возникнет горячая, очень плотная среда. Но сделать холодную очень плотную среду да вдобавок еще и устойчивую, чтобы ее можно было детально изучать, в лаборатории невозможно. В нейтронных звездах это существует само собой.
В результате в недрах нейтронных звезд могут существовать довольно экзотические формы вещества. Самое экзотичное, наверное, кварковое. Все знают, что протоны и нейтроны – это не целые частицы, а составные. Они состоят из кварков – каждый из трех. Но выдернуть одиночный кварк из нейтрона или протона невозможно. Если вы все-таки попробуете, то вам придется затратить настолько много энергии, что появятся новые частицы: кварк и антикварк. Новый кварк останется в протоне или нейтроне, а антикварк прицепится к вытягиваемому вами кварку, образовав мезон – составную частицу. И поэтому в обычной ситуации свободных кварков не бывает. Но можно пойти совершенно от противного и начать протоны и нейтроны сдавливать. И тогда кварки, которые были заперты в индивидуальных хозяйствах нейтронов и протонов, при большом давлении вдруг станут свободными, образуется такой кварковый колхоз. Вот это и есть кварковое вещество. Это очень интересная гипотеза с интересными следствиями. По всей видимости, единственное место в природе, где такая любопытная штуковина может существовать, – это как раз недра нейтронных звезд.
В физике часто важно, чтобы какая-то величина не просто была большой или маленькой, а чтобы ее значение превосходило некоторый предел. Для магнитных полей таких пределов несколько. Первый соответствует полю примерно в миллиард раз больше, чем на Солнце (или в несколько миллиардов раз больше, чем на Земле). Уже это значение существенно превосходит экспериментальные возможности наших лабораторий. В таком поле энергия электрона становится сравнимой с его кулоновской энергией в атоме водорода – самом распространенном во Вселенной элементе. Если поля заметно выше этого критического значения, то форма электронного облака в атоме меняется, оно вытягивается вдоль поля, и атом становится похож на цилиндр (или, иногда говорят, на иголку). Это многое меняет. Например, атомы могут образовывать псевдомолекулярные цепочки вдоль линий магнитного поля, а также – трехмерные структуры, соответствующие конденсату. Это важно для свойств атмосфер нейтронных звезд, о которых мы поговорим ниже.
Второе критическое значение называется Швингеровским полем. Оно в десятки раз больше, чем у обычных радиопульсаров (т. е. примерно в 100 000 миллиардов раз больше, чем на Земле). В данном случае энергия электрона в поле (соответствующая его так называемой циклотронной частоте) становится больше его энергии покоя. Это приводит к ряду интересных эффектов. В сверхшвингеровских полях с очень большой вероятностью происходит однофотонное рождение электрон-позитронных пар с участием гамма-квантов относительно низкой энергии. Если в обычной ситуации нам надо два энергичных гамма-кванта, чтобы породить пару из электрона и позитрона, или хотя бы один квант очень высокой энергии в магнитном поле (при не слишком высокой энергии квантов вероятность процесса становится очень малой, если поле имеет недостаточную величину), то в сильных магнитных полях любой, самый хилый фотон, чья энергия больше суммы массы покоя электрона и позитрона, с высокой вероятностью может породить пару частиц.