Каменный дракон - Хромовских Владимир Сергеевич 19 стр.


Подобную работу ранее выполнили Г. М. Арешидзе, Э. А. Джавахишвили и М. Г. Кванчахадзе. В частности, ими было показано, что оползневая пораженность склонов в целом увеличивается с уменьшением возраста пород. Оползанию оказались наиболее подверженными палеоген-неогеновые песчаники, глины, мергели и известняки. Заложение поверхностей скольжения в них подчиняется геологическому строению склонов и, в частности, положению ослабленных зон тектонических трещин. Наиболее мощные оползни возникают на северном крыле Рача-Лечхумской синклинали. Здесь породы интенсивно перемяты, насыщены разрывами разных типов, в связи с чем устойчивость склонов резко снижена.

Расскажем об основных принципах построения прогнозной схемы.

Все отмеченные выше (ч. I) обвалы и оползни Большого Кавказа были разделены на группы, различающиеся по литологии пород, геологическому строению склонов и крутизне их наклона. Количество происшедших в той или иной природной обстановке обвалов и оползней характеризовало возможную степень обвально-оползневой опасности аналогичной ситуации там, где такие склоновые смещения пока не происходили, но возможны в будущем, в том числе при землетрясениях.

Чем больше было зарегистрировано крупных склоновых смещений в конкретной геологической ситуации, тем выше был уровень присущей ей ожидаемой сейсмогравитационной опасности.

Все слагающие район породы по механической прочности и стойкости к обвально-оползневым смещениям подразделены на четыре группы, перечисляемые в порядке увеличения вероятности возникновения обвалов и оползней.

К первой группе отнесен комплекс осадочно-метаморфических, вулканогенных и интрузивных образований палеозоя и мезозоя. По данным Г. М. Арешидзе, коэффициент оползневой пораженности для этих пород меньше 0,1. Тем не менее в них, особенно в зонах надвигов, могут формироваться оползни размером 2x3 км и объемом до 180 млн. м

3

(район с. Самицо). Мощность коры выветривания на этих породах составляет 8—15 м.

Во вторую группу входят нижнеюрские аспидные и глинистые сланцы с редкими прослоями песчаников и кварцитов. Мощность коры выветривания достигает здесь 25–30 м.

К третьей группе относятся сланцы, мергели и мергелистые известняки верхней и частично средней юры. Коэффициент оползневой пораженности для этих пород составляет 0,6–0,7. Мощность коры выветривания достигает 10–12 м.

В четвертую группу объединены рыхлые, слабосцементированные четвертичные отложения (флювиогляциальные, аллювиальные, делювиальные), отличающиеся очень малой механической прочностью и большой подвижностью под действием сил гравитации при определенных условиях (насыщенность грунтовыми водами, залегание на наклонных поверхностях и т. п.).

Большое значение при прогнозе обвально-оползневой опасности имеет расчлененность рельефа, крутизна склонов долин и хребтов. Чем круче склон, тем больше при прочих равных условиях вероятность возникновения лавин, обвалов и оползней. Поэтому нами принята следующая градация склонов по углам наклона земной поверхности.

1. Угол наклона менее 15°. На таких участках возможность возникновения сейсмогравитационных оползней и обвалов минимальна, за исключением зон вспарывания тектонических швов при землетрясениях.

2. Угол наклона более 15°, но менее 45°. Вероятность сейсмогравитационных смещений на таких участках значительно увеличивается, что наблюдалось нами при обследовании крупных склоновых смещений, вызванных древними землетрясениями в бассейне р. Ингури, а также в эпицентральной зоне Чхалтинского 9-балльного землетрясения 16 июля 1963 г.

3. Угол наклона более 45°. Опасность сейсмогравитационных смещений на таких склонах резко возрастает.

Особенности геологического строения склонов, и в первую очередь их взаимоотношение с элементами залегания пород, существенно влияют на характер склоновых смещений. Согласное падение пород и поверхности склона облегчает их образование. Подобные примеры описаны Г. М. Арешидзе для Рачи и Окрибы (оползень у с. Хирхониси в верховьях р. Гунгулы и ряде других районов), а также наблюдались нами на склонах Лечхумского хребта. В то же время падение пород в глубь склона препятствует формированию скальных обвалов и оползней.

Сейсмогравитационным смещениям способствует насыщенность склонов разрывными нарушениями. Породы в зонах разломов, как правило, интенсивно перемяты, раздроблены. По наблюдениям В. П. Солоненко, за счет проникновения поверхностных вод в тектонические трещины создается гидростатическое давление, достигающее подчас нескольких тонн на квадратный метр.

С учетом перечисленных геоморфологических и структурно-геологических особенностей нами составлена схема районирования части территории Сванетии по степени опасности возможных сейсмогравитационных склоновых смещений.

К районам с высоким уровнем опасности возникновения таких смещений отнесены участки, сложенные разными породами с углами наклонов земной поверхности более 45°, зоны разрывных нарушений, разбитые трещинами ледники, нависшие над долинами, а также участки развития четвертичных отложений и коры выветривания на поверхностях с наклоном более 15°.

К районам с повышенной опасностью сейсмограви-тационных смещений относятся площади, сложенные карбонатными породами, глинистыми сланцами, мергелями и мергелистыми известняками, и углами наклонов земной поверхности от 15 до 45°.

Группа районов со средней степенью опасности возникновения сейсмогравитационных смещений сложена нижнеюрскими глинистыми и аспидными сланцами с прослоями песчаников, падающими субпараллельно склонам крутизной от 15 до 45°.

К районам с пониженной опасностью сейсмогравитационных смещений относятся участки склонов крутизной от 15 до 45°, сложенные теми же породами, что и предыдущие районы, но падающими в глубь склона, а также породами палеозоя-триаса (кристаллические сланцы, гнейсы, песчаники, кварциты), падающими субпараллельно склонам.

Склоны крутизной от 15 до 45°, сложенные отмеченными породами палеозоя-триаса, падающими в глубь склонов, относятся к районам с низкой степенью опасности сейсмогравитационных смещений.

Опасность крупных сейсмогравитационных смещений практически отсутствует на выровненных площадках с углами наклонов менее 15°, сложенных любыми породами.

Зоны разломов и стратиграфических контактов между толщами, разнородными по литологическому составу и возрасту, относятся к линейным участкам с повышенной опасностью возникновения оползней и обвалов по сравнению с той, которая принята в целом для конкретного района.

Вблизи молодых разрывов, включая Главный Кавказский надвиг, возможны сейсмические сотрясения с интенсивностью более 9 баллов, за счет чего здесь резко возрастает опасность образования обвалов и оползней по сравнению с другими частями территории, где эффект сотрясения не превысит 9 баллов.

Выпадение большого количества атмосферных осадков, как и вообще избыточное увлажнение, многократно увеличивает вероятность образования обвалов и оползней.

При прогнозе обвально-оползневой опасности в горных областях необходимо помнить, что основные причины возобновления неустойчивых масс на склонах практически неустранимы. Они кроются в постоянном росте гор, физическом и химическом выветривании пород, интенсивном врезании русел рек и подмыве ими склонов долин и ущелий. Землетрясения зачастую являются лишь поводом к оползанию или обрушению склонов. Подземные толчки смещают только те их части, которые подготовлены к этому другими природными процессами. Лишь в зонах разломов, вскрывающихся при землетрясениях, там, где сила удара достигает максимума, в движение могут быть приведены вполне устойчивые склоны. Такие районы должны быть запретными для строительства ответственных сооружений, а тем более жилых комплексов.

Что касается прогноза антропогенных обвалов и оползней в областях интенсивного народнохозяйственного освоения, то приведенные выше примеры искусственного нарушения устойчивости склонов должны призывать к предельной осторожности. Особую внимательность следует проявлять при подрезке крутых и высоких склонов авто- и железнодорожными выемками, штольнями, туннелями, при создании крупных водохранилищ, приводящих к интенсивному подмыву и переработке берегов, при отработке глубоких карьеров, строительстве высотных плотин, перераспределяющих напряжения в скальных массивах, при закачке в недра воды и других жидкостей, изменении режима грунтовых вод, производстве поверхностных и особенно подземных взрывов, оттаивании вечномерзлых пород, при авариях трубопроводов в горных местностях, при создании высоких отвалов-терриконов, при вырубке леса и уничтожении растительности на склонах.

Заключение

Любое научное исследование природных явлений с неблагоприятными последствиями должно быть направлено на выработку рекомендаций по их предсказанию и предотвращению. Изучение обвалов и оползней в этом смысле не составляет исключения, и сегодня сделано немало для предупреждения грозящей опасности склоновых смещений.

В горных районах с резкорасчлененным рельефом, высокой сейсмичностью и огромным разнообразием геологического строения склонов проблема прогноза обвалов и оползней многократно усложняется. Без детальной разведки мы обычно с большими упрощениями представляем ситуацию внутри неустойчивого склона. До первых микроподвижек его частей подчас невозможно решить — произойдет здесь быстрое смещение пород или нет. Поставить инструментальное наблюдение за микроподвижками склонов на большой площади практически невозможно. Поэтому сегодня наиболее реальным остается вероятностный прогноз обвально-оползневой опасности по геолого-геоморфологическим эталонам[24] неустойчивых склонов, на которых при землетрясениях уже было зарегистрировано сейсмогравитационное смещение грунтов. Однако подборка таких эталонных геолого-геоморфологических, гидрогеологических и иных условий, при сочетании которых склон теряет устойчивость в момент подземного толчка, представляет нелегкую задачу.

Огромный фактический материал свидетельствует о том, что в эпицентральных зонах даже самых сильных землетрясений рушатся далеко не все склоны, хотя сила удара нередко одинакова и на участках с возникшими склоновыми смещениями, и там, где они не происходят. Это говорит о том, что при сходной или идентичной геолого-геоморфологической ситуации нужны какие-то особые сочетания условий, способствующие срыву пород на конкретном участке.

Изучение крупных обвально-оползневых феноменов не только дает возможность глубже понять механизм их формирования, но и ставит новые вопросы. Один из них: почему при почти одинаковой подготовке склонов к смещениям оползни и обвалы на них происходят при разных по силе землетрясениях? Например, есть много общих черт в подготовке склонов к обрушению в долине Бартанга на Памире и ущелье р. Мантаро в Перу. При огромных высотах (до нескольких километров) гор породы на их крутых склонах наклонены в сторону долин под большими углами, что создает идеальные условия для их соскальзывания, а длительная увлажненность к моменту образования оползней довершила давно начавшуюся здесь подготовку к гравитационному смещению скальных массивов. В обоих случаях родились оползни-гиганты, близкие по объемам, — Усойский и Мантаро. Но первый был вызван сильным землетрясением, а второй — слабым подземным толчком. Произойди тогда, в 1911 г., слабое землетрясение в районе Усойской горы, и еще неизвестно, образовался бы или нет такой грандиозный завал. В этом убеждает нас устойчивость здешних склонов и мощного оползня Правобережный даже при сильных (5–6 баллов) подземных толчках в 1959, 1963 и 1978 гг. Поэтому обнаружение склонов, аналогичных по строению и признакам неустойчивости тем, на которых возникли оползни Усойский и Мантаро, еще не позволяет сказать определенно: произойдет на таком участке склоновое смещение при очередном землетрясении или нет. Можно только оценить вероятность ожидаемого события, что связано с неменьшими трудностями. Например, в отличие от оползней Усой-ского и Мантаро величайший в Европе оползень Флимз сформировался вовсе не в высоких теснинах гор. А уж наклон его поверхности смещения (7—12°) вообще вряд ли бы вызвал подозрения на предмет возможности сползания по ней такого гиганта даже в момент подземного толчка. Так же невозможно было предвидеть, что огромные оползни-оплывины, возникшие при Верненском землетрясении 1887 г. в период значительного увлажнения склонов, могут повториться и быть не менее смертоносными при близком по силе Кеминском землетрясении зимой 1911 г., когда земля была скована морозами.

Совсем не уникальны геолого-геоморфологические условия и в месте образования самого грандиозного на Земле оползня Сеймерре, сорвавшегося со склона хребта Кабир-Кух высотой всего около 2 км.

Лишь оползень Гро-Вентр представляет собой классический пример, когда можно было достаточно уверенно предугадать возникновение склоновых смещений в момент землетрясений. Такую возможность давала очевидная оползнеопасная обстановка: полное совпадение наклона пластов с достаточно крутым углом наклона склона; залегание пластичных легкоразмокаемых глин в основании пачки известняков, свободно фильтрующих воду; обильные дожди, увлажнившие породы, за счет чего вес верхней толщи пород многократно увеличился, а глины, служившие водоупором, собиравшим атмосферные осадки, сыграли роль идеальной смазки, по которой в момент умеренного по силе подземного толчка и соскользнули блоки известняков и песчаников. Но ведь такая ситуация была и на рядом расположенных склонах, а оползней там не произошло. Таким образом, и этот случай подтверждает общее правило: даже при полной ясности природной ситуации и явной неустойчивости склонов точное место возникновения сейсмогравитационных облавов и оползней заранее указать нельзя.

Каким же образом предвидеть склоновые смещения и избежать их разрушительных последствий?

Лучшей мерой защиты является выбор для строительства площадок, где эти явления невозможны или их вероятность минимальна. Путь к этому — тщательное изучение условий возникновения склоновых смещений, подразделение территорий на районы с разной степенью обвально-оползневой опасности.

Горные страны необозримы, и далеко не все известно о возникающих в их пределах обвалах и оползнях. Они происходили с незапамятных времен, и самые грандиозные из них вероятнее всего были связаны с сильными землетрясениями. Сейчас возможности обнаружения таких гигантов и меньших по размеру обвально-оползневых смещений значительно расширились. Аэрофото- и космическая съемки в разных спектральных диапазонах представляют исследователям отличную возможность для обнаружения подобных деформаций. Ниши отрыва значительных по объемам обвалов и оползней прекрасно видны на аэрофотоснимках и среднемасштабных спектрозональных космоснимках. Изучение последних дает значительную экономию времени и трудозатрат при районировании территории по степени обвально-оползневой опасности, ибо на космоснимке отражена огромная площадь. Используя современную фотограмметрическую технику, можно с большой точностью произвести привязку обнаруженных на космоснимках крупных обвалов и оползней к геологическим комплексам и структурам, а также к топографическим картам, отражающим современный рельеф, что уже само по себе дает возможность в первом приближении судить о распространении и связи обвально-оползневых процессов с особенностями строения земной поверхности. А крупномасштабные повторные аэросъемки в разные годы одной и той же территории дают неоценимый материал для изучения динамики активных оползней и установления связи их подвижек с различными природными явлениями (обильными осадками, землетрясениями и т. д.).

Аэровизуальная (с самолета или вертолета) и наземная заверки обнаруженных склоновых смещений позволяют количественно (по их числу и объемам) оценить степень пораженности склонов обвалами и оползнями и, что самое главное, выделить геолого-геоморфологические эталоны для прогноза этих смещений в тех местах, где они еще не происходили. Это особенно важно при освоении малообжитых горных территорий с высокой сейсмичностью, где гирлянды обвалов и оползней позволяют уточнять положение разломов в земной коре, порождающих сильные землетрясения, а значит, более точно оценивать и сейсмическую опасность районов.

Таким образом, аэрофото- и космическая съемки — мощное оружие обвально-оползневого прогноза, во всяком случае крупных сейсмогравитационных смещений, ибо часто они повторяются там, где уже не раз происходили.

В настоящее время существует множество инструментальных методов наблюдений за устойчивостью склонов, с помощью которых фиксируются малейшие подвижки в глубине массивов рыхлых, а во многих случаях и скальных пород. Уровень технической вооруженности сегодня настолько высок, что позволяет уловить самые начальные стадии развития обвально-оползневого процесса. Это дает возможность утверждать, что при соответствующей организации наблюдений обвалы и оползни будут достаточно точно прогнозироваться по месту и времени возникновения, что позволит избежать их негативных последствий.

Назад Дальше