Котлы тепловых электростанций и защита атмосферы - Котлер Владлен Романович 5 стр.


Принципиальная разница между

Рис. 3.7. Шаровая барабанная мельница: 1 – входной патрубок; 2 – опорный подшипник; 3 – барабан мельницы с тепло– и звукоизоляцией; 4 – выходной патрубок; 5 – большая шестерня; 6 – редуктор; 7 – электродвигатель

Сырое топливо вместе с горячим воздухом подается в барабан через входной патрубок, а готовая пыль удаляется вентилирующим агентом через выходной патрубок.

Достоинством ШБМ является их универсальность: они пригодны для размола как мягких углей с высоким выходом летучих, так и твердых топлив, типа АШ. В случае попадания в ШБМ посторонних (в том числе – металлических) предметов не требуется аварийный останов мельницы.

К недостаткам ШБМ относятся, прежде всего, повышенный расход электроэнергии на размол: энергия тратится на вращение барабана даже при отсутствии топлива. Второй недостаток – износ шаров (при размоле АШ, например, истирается 400 г металла на 1 т полученной угольной пыли). Кроме того, пылесистема с ШБМ – это, как правило, пылесистема с промбункером, то есть громоздкая и сложная система, требующая место для сепараторов, циклонов, пылевых бункеров и пылепитателей. Поэтому такие мельницы в настоящее время применяются только в случае использования малореакционных твердых углей с К

Рис. 3.8. Молотковая мельница с аксиальным подводом сушильного агента: 1 – корпус; 2 – била; 3 – ротор; 4 – патрубки для подвода сушильного агента; 5 – электродвигатель

Кроме дробленого топлива, в молотковую мельницу подается сушильный агент: горячий воздух или смесь воздуха с дымовыми газами, отобранными из конвективной шахты котла дымососом рециркуляции. По способу подвода сушильного агента молотковые мельницы делятся на аксиальные (ММА) и тангенциальные (ММТ). Заодно с мельницами устанавливаются центробежные или инерционные сепараторы, которые возвращают грубые частицы угля на повторный размол в мельницу. На котлах малой производительности можно встретить шахтные (гравитационные) сепараторы, после которых аэросмесь поступает в топку через открытую амбразуру (рис. 3.9).

Рис. 3.9. Схема действия молотковой мельницы и её компоновка с котлом: 1 – поступление топлива; 2 – размол топлива; 3 – гравитационный сепаратор; 4 – амбразура; 5 – топочные экраны

Для размола каменных углей за рубежом обычно используют

Рис. 3.10. Шаровая среднеходная мельница: 1 – вход сырого топлива; 2 – выход угольной пыли и сушильного агента; 3 – регулируемые лопатки сепаратора; 4 – возврат грубых частиц; 5 – пустотелые шары; 6 – вращающееся нижнее размольное кольцо; 7 – вход первичного воздуха; 8 – нажимные цилиндры; 9 – направляющие ступицы колеса; 10 – стационарное верхнее кольцо; 11 – проходная плита; 12 – редуктор; 13 – камера провала

В мельницах МВС обычно устанавливают два конических валка. Попадая под них, угольная дробленка раздавливается (рис. 3.11). Горячий воздух, как и в МШС, выносит пыль в сепаратор, установленный над мельницей. Крупные частицы из сепаратора возвращаются на размольный стол, а подсушенная пыль направляется по пылепроводу к горелке (или через делитель пыли к нескольким горелкам одного яруса).

Рис. 3.11. Валковая среднеходная мельница

Достоинствами среднеходных мельниц являются их компактность (по сравнению с ШБМ) и значительно меньший (12–15 кВт·ч/т) расход электроэнергии на размол. Основной недостаток – чувствительность к попаданию вместе с топливом металлических предметов, а также неравномерность износа размалывающих элементов. При размоле высоковлажных бурых углей использование среднеходных мельниц приводит к их замазыванию. Более подходящими для этого случая считаются молотковые мельницы, описанные выше, а также

, кг влаги/кг сырого топлива.

Дальнейшая сушка топлива осуществляется в процессе размола в мельнице-вентиляторе и частично в пылепроводе от мельницы до горелки, где температура пылегазовоздушной смеси еще достаточно высока (до 180 °С).

Рис. 3.12. Мельница-вентилятор М-В 3300/800/490: 1 – муфта; 2 – система смазки; 3 – ходовая часть откатной дверки

Благодаря предварительной подсушке топлива увеличивается размольная производительность мельницы, уменьшается износ мелющих органов и снижается расход электроэнергии на пылеприготовление. Подсушенные частицы топлива разрушаются при меньшем времени пребывания их в мельнице за счет снижения кратности циркуляции.

Кроме дымовых газов на всас М-В подается горячий воздух, изменение количества которого позволяет регулировать температуру сушильного агента.

Мельницы-вентиляторы устанавливают как можно ближе к горелкам, чтобы уменьшить длину (а следовательно, и сопротивление) газовоздушного тракта. Для отключения мельницы от топки до и после нее предусматривают установку шиберов. Индивидуальная схема пылеприготовления с прямым вдуванием, мельницей-вентилятором и пылеконцентратором представлена на рис. 3.13.

Рис. 3.13. Схема пылеприготовления с мельницей-вентилятором М-В 2700/850/590 блока 150 МВт: 1 – бункер топлива; 2 – отсекающий шибер; 3 – питатель сырого топлива; 4 – сушильная шахта; 5 – мельница-вентилятор; 6 – инерционный сепаратор; 7 – горелочное устройство; 8 – окно отбора газов для сушки топлива; 9 – смесительная камера; 10 – отключающий шибер; 11 – котел; 12 – дутьевой вентилятор; 13 – воздуховод горячего воздуха; 14 – воздухоподогреватель; 15 – взрывной клапан; 16 – клапан присадки холодного воздуха; 17 – мигалка; 18 – форсунка для впрыска воды; 19 – пыледелитель; 20 – газопровод дымовых газов; 21 – смесительная камера газов и горячего воздуха; 22 – пылеконцентратор; 23 – сбросная горелка

Мельница-вентилятор для высоковлажного бурого угля – агрегат, состоящий из улитки-корпуса и консольного мелющего колеса, состоящего из основного диска, покрывающего диска и лопаток. Корпус изнутри покрыт броневыми плитами толщиной 70–80 мм. На каждой лопатке закреплена изнашивающаяся сменная часть толщиной 30–50 мм. Вал, на котором сидит мелющее колесо, опирается на подшипники и через муфту соединяется с электродвигателем.

Входной патрубок выполнен в виде открывающейся или отодвигаемой дверки, что позволяет производить замену мелющего колеса. Узел крепления дверки к корпусу для М-В небольшой производительности выполняют в виде консольной подвески. Но для более крупных мельниц-вентиляторов, когда масса дверки приближается или даже превышает Ют, дверку подвешивают на балки и оснащают колесиками, которые по направляющим позволяют свободно открывать ее в осевом направлении.

Для замены мелющего колеса используют специальные автопогрузчики, которые должны иметь доступ к мельнице-вентилятору со стороны открывающейся дверцы.

Основным изготовителем мельниц-вентиляторов в России является Сызранский завод тяжелого машиностроения в Самарской области (ОАО «Тяжмаш»). В табл. 3.2 приведены характеристики М-В, выпускаемых этим заводом в последние годы.

Таблица 3.2. Мельницы-вентиляторы завода «Тяжмаш»

*Цифры типоразмера соответствуют: наружному диаметру рабочего колеса, мм; ширине лопаток, мм; частоте вращения ротора, об/мин.

Стремление к повышению интенсивности размола топлива в мельницах-вентиляторах привело к установке перед лопаточным колесом дополнительных бил, закрепляемых обычно на консольном валу во всасывающем патрубке мельниц. На рис. 3.14 показана двухопорная мельница-вентилятор с четырехрядными предвключенными билами производительностью 80 т/ч по бурому углю.

Рис. 3.14. Мельница-вентилятор двухопорного типа: 1 – вал; 2 – упорный подшипник; 3 – броня улитки; 4 – приемный патрубок; 5 – предвключенные била; 6 – выступ мелющей лопатки; 7 – электродвигатель; 8 – штурвал для прижатия люка; 9 – окно для замены лопаток и бил

Предвключенные била измельчают уголь до его поступления в ротор и увеличивают равномерность распределения топлива по его окружности. Опыт эксплуатации мельниц-вентиляторов подтверждает, что замена обычной М-В на М-В с предвключенными билами значительно уменьшает долю грубых фракций с размером более 1000 мкм.

3.1.4. Пылеконцентраторы

В последние десятилетия при использовании высоковлажных и низкокалорийных твердых топлив на тракте между мельницей и горелкой стали устанавливать

Рис. 3.15. Схема пылеконцентратора: 1 – корпус; 2 – завихритель; 3 – рассекатель; 4 – основной отвод; 5 – сбросной отвод

При сжигании, например, болгарского лигнита с Q

Назад Дальше