Наиболее важно это для квантовой механики. К сожалению, я не могу объяснить этого здесь, отчасти (и только отчасти) потому, что лекция предназначена аудитории без математической подготовки. Но и для подготовленного читателя это хитрый вопрос. В квантовой механике утверждение, что один атом можно заменить другим, однотипным, приводит к удивительным следствиям. Оно объясняет странное явление, наблюдаемое в жидком гелии, который течет по трубам, не испытывая какого-либо сопротивления, просто течет себе и течет и так никогда и не останавливается. Оно даже лежит в основе всей периодической системы элементов и объясняет, откуда берутся те силы, что не дают мне провалиться сквозь пол. Здесь я не могу говорить обо всем этом подробно, но мне хочется подчеркнуть важность исследования этих принципов.
Теперь вам может показаться, что все законы физики симметричны относительно любых изменений. Чтобы вы так не думали, я приведу несколько примеров. Первый из них - изменение масштаба. Неверно, что если вы построите одну установку, а затем другую, каждая деталь которой будет точным повторением соответствующей детали предыдущей установки и будет сделана из того же материала, но только в два раза крупнее, то она будет работать точно таким же образом, что и первая. Те, кто уже привык иметь дело с атомами, знают об этом, так как если я уменьшу установку в десять миллиардов раз, то на нее придется около пяти атомов, а из пяти атомов не сделаешь, например, станка.
Совершенно очевидно, что так сильно мы не можем менять масштаб. Но это было ясно и до того, как начала проясняться атомарная картина мира. Возможно, вы время от времени обращали внимание на статьи в газетах, в которых говорится, что кто-то построил собор из спичек - многоэтажный, гораздо более готический, чем самый готический из соборов, и такой изящный и т. д. Почему же мы никогда не строим таких же настоящих соборов из огромных бревен, с той же степенью изящества, с тем же вкусом к деталям? Ответ таков - если бы вы построили такой собор, то он оказался бы настолько высоким и тяжелым, что рухнул бы. Да! Ведь мы забыли, что, сравнивая две вещи, нужно менять все, что входит в систему! На маленький собор действуют силы притяжения Земли, так что для сравнения необходимо, чтобы на большой собор действовали силы Земли, увеличенной в нужное число раз. Это еще хуже. Земля больших размеров будет еще сильнее притягивать, а тогда ваши балки и подавно сломаются.
Тот факт, что законы физики не остаются неизменными при изменении масштаба, впервые был обнаружен Галилеем. Рассуждая о прочности костей и балок, он приводит такие соображения. Если вам требуются кости для более крупного животного, которое, скажем, в два раза выше, толще и длиннее нормального, то вес этого животного увеличится в восемь раз, и, следовательно, вам нужны кости, которые выдерживали бы восьмикратную нагрузку. Но прочность кости зависит от размеров ее поперечного сечения, а поэтому если вы увеличите все кости по сравнению с прежним в два раза, то их поперечное сечение увеличится лишь в четыре раза, и, следовательно, они смогут выдерживать лишь четырехкратную нагрузку. В его книге "Диалог о двух новых науках" вы найдете рисунки воображаемых костей гигантской собаки совершенно других пропорций. Мне кажется, Галилей считал, что открытие этого факта несимметричности законов природы относительно изменения масштаба не менее важно, чем открытые им законы движения, и именно поэтому он включил и то и другое в свою книгу "Диалог о двух новых науках".
Вот еще один пример асимметрии закона физики. Если вы вращаетесь с постоянной угловой скоростью в космическом корабле, то неправильно было бы утверждать, что вы этого не заметите. Напротив. У вас начнется головокружение. Появятся и другие признаки: все предметы будут отброшены к стенам центробежной силой (называйте ее, как хотите - я надеюсь, что в этой аудитории нет преподавателей физики для первокурсников, которые захотели бы поправить меня). Определить, что Земля вращается, можно при помощи маятника или гироскопа, и вы, возможно, слышали, что в различных обсерваториях и музеях имеются маятники Фуко (1819-1868), которые служат для доказательства факта вращения Земли без наблюдения за звездами. Мы можем, не выглядывая наружу, сказать, что мы вращаемся с постоянной угловой скоростью на Земле, потому что при таком движении законы физики не остаются неизменными.
Многие указывают на то, что на самом деле Земля вращается относительно галактик, и говорят, что если бы мы поворачивали галактики вместе с Землей, то законы не изменились бы. Ну, я лично не знаю, что произошло бы, если бы мы могли поворачивать всю Вселенную, и в настоящее время мы даже не знаем, как за это взяться. Точно так же в настоящее время у нас нет теории, которая описывала бы влияние галактик на земные явления так, чтобы из нее (естественным образом, а не в результате обмана или натяжек) следовало, что инерция вращения, эффекты вращения, скажем, вогнутая форма поверхности воды во вращающемся ведерке - все это объяснялось действием сил, создаваемых предметами, находящимися в непосредственной близости.
Пока не известно, справедливо это или нет. Что так должно быть, говорится в принципе Маха, но справедливость этого принципа еще не была доказана. Экспериментально проще ответить на такие вопросы. Если мы вращаемся с постоянной скоростью относительно туманностей, наблюдаем ли мы при этом какие-либо специфические явления? Да. А если мы движемся в космическом корабле по прямой с постоянной скоростью относительно туманностей, увидим ли мы в этом случае какие-либо специфические явления? Нет. Это совершенно разные вещи. Нельзя утверждать, что всякое движение относительно. Не в этом содержание принципа относительности. Он утверждает лишь, что нельзя обнаружить изнутри равномерного и прямолинейного (относительно туманностей) движения.
Еще один закон симметрии, о котором я хочу поговорить теперь, интересен и сам по себе, и своей историей. Он связан с вопросом о зеркальном пространственном отражении. Пусть я построил какую-то установку, скажем часы, а затем вблизи построил другие часы, являющиеся зеркальным отображением первых. Они подходят друг к другу, как две перчатки, правая и левая; каждая пружина, которая заводится в одних часах в одну сторону, в других часах заводится в другую и т. д. Я завожу и те и другие часы, ставлю на них одинаковое время, и пусть они себе идут. Вопрос - будут ли они показывать всегда одно и то же время или нет? Будет ли весь механизм одних часов, как в зеркале, повторять поведение другого? Не знаю, какой ответ на эти вопросы покажется вам правильным. Вероятнее всего, положительный, так думает большинство. Конечно, мы не имеем сейчас в виду географию. Пользуясь географией, мы можем разобраться, где право и где лево, Мы можем сказать, например, что если мы находимся во Флориде и повернемся лицом к Нью-Йорку, то океан окажется у нас справа. Это позволяет различать право и лево, и если в наших часах используется морская вода, то зеркальное отображение часов не будет ходить, так как соответствующая часть механизма не попадет в воду. Тогда вам пришлось бы предположить, что для вторых часов изменилась и география Земли: вы помните, зеркально отобразиться должно все существенное.
Нас не интересует сейчас и история. Если вы раздобудете на заводе винт, то, вероятнее всего, у него будет правая резьба, и вы можете утверждать, что вторые часы не будут вести себя точно так же, поскольку для них будет труднее достать нужные винтики. Но это относится лишь к характеру вещей, которые обычно выпускает наша промышленность. Так или иначе, вероятнее всего, что наше первое предположение будет таким: зеркальное отображение ничего не меняет. В самом деле, законы тяготения, оказывается, таковы, что в часах, действие которых основано на этих законах, ничего не изменится. Подобным же свойством обладают и законы электричества и магнетизма, так что, если в наших часах есть к тому же и электрическая или магнитная начинка, какие-то там провода, токи и т.п., вторые часы будут по-прежнему работать в полном согласии с первыми. Ничего не изменится также, если в наших часах используются обычные ядерные реакции. Но есть явления, для которых эта разница существует, и я сейчас перейду к этому вопросу.
Возможно, вы слышали, что измерять концентрацию сахара в воде можно, пропуская через воду поляризованный свет. Так вот, возьмем кусок поляроида, пропускающего лишь свет с определенной поляризацией, и пропустим луч света через него и через сахарный раствор. Мы увидим, что если после прохождения через сахарный раствор луч пройдет еще через один кусок поляроида, то чем толще пройденный слой раствора, тем больше вправо нужно будет повернуть второй кусок поляроида, чтобы на выходе увидеть луч света. Теперь, если вы попробуете пропускать свет через тот же раствор, но в обратном направлении, то окажется, что вам снова придется поворачивать выходной кусок поляроида вправо. Вот мы и получили разницу между правым и левым. Сахарный раствор и пучок света можно использовать в часах. Пусть у нас есть сосуд с сахарной водой и мы пропускаем через него луч света, а второй кусок поляроида повернули так, что он пропускает весь свет. Предположим затем, что мы воспроизведем зеркальное отображение всей этой конструкции во вторых часах, надеясь, что плоскость поляризации света повернется влево. Ничего не выйдет. Свет, как и в первых часах, будет поворачиваться вправо, и второй кусок поляроида его не пропустит. Значит, при помощи сахарного раствора мы сможем обнаружить разницу между нашими двумя часами.
Это замечательный факт, и с первого взгляда кажется, что физические законы не обладают симметрией относительно зеркальных отображений. Но сахар, которым мы пользовались во время наших опытов, вероятнее всего. изготовлен из сахарной свеклы. Молекулы же сахара сравнительно просты, и их можно воспроизвести в лаборатории из углекислого газа и воды после большого числа промежуточных преобразований. Так вот, если вы поставите аналогичный опыт с искусственным сахаром, который химически ничем не отличается от обычного, то окажется, что поляризация света при этом вообще не меняется.
Сахаром питаются бактерии, и если внести бактерии в водный раствор искусственного сахара, то окажется, что они съедают лишь половину сахара, и после того, как они съедят ее, плоскость поляризации света, пропускаемого через оставшуюся сахарную воду, станет поворачиваться влево. Это можно объяснить следующим образом. Сахар представляет собой сложную молекулу, некоторый набор атомов, образующих сложную конструкцию. Если собрать конструкцию, представляющую собой зеркальное отображение первой, сохраняя все расстояния между любыми парами атомов и энергию молекул, то для всех химических явлений, не затрагивающих процессов жизни, они неразличимы. Но живые существа различают эти два типа молекул. Например, бактерии едят лишь молекулы одного типа и не едят молекул другого. Тот сахар, который получается из сахарной свеклы, состоит из молекул только одного сорта, только правосторонних молекул, и поэтому поляризует свет только в одном направлении. Только такого типа молекулы съедобны для бактерий. Но когда мы синтезируем сахар из веществ, которые сами по себе не являются асимметричными, а представляют собой простые газы, мы синтезируем молекулы обоих типов в равных количествах. Если теперь в такой сахар попадают бактерии, то они съедают молекулы одного типа и оставляют нетронутыми молекулы другого. Вот почему поляризация света оставшейся сахарной водой изменяется в другом направлении, чем обычно. Как выяснил Пастер, эти два типа сахара можно различать, рассматривая их кристаллы под микроскопом.
Мы можем с полной определенностью показать, что все это действительно так, и мы можем разделять оба типа сахара, не дожидаясь помощи бактерий, если нам это понадобится. Но гораздо интереснее, что это умеют и бактерии. Значит ли это, что жизненные процессы не подчиняются обычным физическим законам? По-видимому, нет. Похоже, что в живых организмах много-много очень сложных молекул и что у всех у них есть определенная ориентация. Одними из наиболее характерных молекул живых организмов являются белковые молекулы. Такие молекулы закручиваются в виде штопора, причем закручиваются вправо. Настолько, насколько можно утверждать сейчас, если бы нам удалось создать химическим путем точно такие молекулы, но закрученные влево, а не вправо, то эти молекулы не смогли бы выполнять своих биологических функций, так как, столкнувшись с другими белковыми молекулами, они не смогут взаимодействовать с ними обычным образом. Левая резьба подходит к левой резьбе, но не подходит к правой. Вот почему бактерии с правой резьбой в своем химическом нутре могут отличить правый сахар от левого.
Как же так получилось? Физики и химики не могут различать таких молекул и могут синтезировать лишь молекулы обоих видов, а биология может. Можно думать, что объясняется это так: давным-давно, когда жизнь только зарождалась, случайным образом возникла одна молекула, которая стала затем размножаться самовоспроизведением и т.д. до тех пор, пока много-много лет спустя не появились эти забавные бурдюки с разветвляющимися на концах отростками, которые могут стоять и без конца очень быстро говорить что-то друг другу... Но ведь мы всего лишь потомки этих первых нескольких молекул, и чисто случайно оказалось, что у этих первых молекул одна ориентация, а не другая. Эти молекулы могли быть либо одного типа, либо другого, либо с левой, либо с правой ориентацией, а затем они начали воспроизводиться и размножаться и усложнялись все дальше и дальше. Собственно, таким же образом обстоит дело и с нарезанием винтов в промышленности. Пользуясь винтами с правой резьбой, вы делаете новые винты с правой резьбой и т.д. Тот факт, что все молекулы живых организмов имеют одинаковое "направление резьбы", по-видимому, глубочайшим образом доказывает, что все живое на Земле произошло от одних и тех же предков на молекулярном уровне.
Для того чтобы лучше разобраться в вопросе о том, симметричны ли законы физики относительно изменения правого на левое и наоборот, мы можем сформулировать его следующим образом. Предположим, что мы разговариваем по телефону с каким-нибудь жителем Марса или звезды Арктур и хотим рассказать ему, как все выглядит здесь, на Земле. Прежде всего, как объяснить ему значение слов?
Этот вопрос тщательно исследовал профессор Морисон из Корнеллского университета. Он предлагал такой способ: начать говорить ему "тик, раз; тик, тик, два; тик, тик, тик, три; ..." и т.д. Довольно скоро наш приятель научился узнавать числа. Как только он разберется в нашей системе счисления, вы можете написать ему целую последовательность чисел, соответствующих относительным массам различных атомов, а затем продиктовать "водород 1,008", затем дейтерий, затем гелий и т.д. Посидев некоторое время над сообщенными ему числами, наш приятель догадается, что они совпадают с известными ему отношениями весов элементов и что, следовательно, сопровождающие их слова должны быть названиями этих элементов. Так мало-помалу мы можем построить общий язык. Но здесь возникают проблемы.
Представьте себе, что вы совсем уже привыкли к нашему новому знакомому, и в один прекрасный день вы слышите: "А знаете ли, вы удивительно мне симпатичны. Хотелось бы знать, как вы выглядите". Вы начинаете: "Наш рост что-то около одного метра восьмидесяти сантиметров".- "Один метр восемьдесят сантиметров? А что такое метр?" - спрашивает он. "Ну, это очень просто: сто восемьдесят сантиметров - это в восемнадцать миллиардов раз больше размера атома водорода", - говорите вы. И это не шутка - это один из способов объяснить, что такое 1,80 м кому-нибудь, кто пользуется другой мерой длины, при условии, что вы не можете послать ему какой-нибудь эталон и что у вас нет какого-либо предмета, который виден и вам, и ему. Итак, мы можем сообщить нашему знакомому свои размеры. Это возможно потому, что законы физики не остаются неизменными в результате изменения масштаба, и, следовательно, мы можем этим воспользоваться для того, чтобы определить, каким же масштабом каждый из нас пользуется. Вот так мы и описываем себя: рост - 1,80 м, внешняя симметрия, конечности и т. д. Затем наш марсианин говорит: "Все это очень интересно, но как вы устроены внутри?" Тогда мы рассказываем ему про сердце и про все остальное и говорим: "Сердце расположено слева".