• Между любыми двумя телами во Вселенной действует гравитационная сила, которая пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.
Применяя математические выкладки[49] к этим трем законам, физики XIX столетия могли объяснить орбиты планет вокруг Солнца, орбиты спутников вокруг планет, максимумы и минимумы океанских приливов, падение камней. Они даже могли определить массу Солнца и Земли. Аналогично, используя набор законов электромагнетизма, физики могли объяснить молнию, магниты, радиоволны, а также распространение, преломление и отражение света.
Удача и слава сопутствовали тем, кто сумел использовать законы ньютоновской физики в технике. Манипулируя законами термодинамики, Джеймс Ватт показал, как простейший паровой двигатель, изобретенный ранее, превратить в практичное устройство, получившее его имя. Внимательно изучая работы Джозефа Генри о законах электричества и магнетизма, Сэмюель Морзе создал коммерческую версию телеграфа.
Изобретатели и физики вместе гордились полнотой своего понимания. Казалось, все на Земле и в небесах подчиняется ньютоновским физическим законам, а власть этих законов давала людям власть над окружающим их миром и, возможно, однажды должна была дать им власть над всей Вселенной.
* * *
Все старые, хорошо изученные ньютоновские законы и их применение в технике Эйнштейн мог изучить на лекциях Генриха Вебера, и изучить хорошо. Действительно, в течение нескольких первых лет в ЕТН Эйнштейн был в восторге от Вебера. Единственной женщине на его курсе в ЕТН, Милеве Марич (в которую он был влюблен), он писал в феврале 1898 г.: «Вебер читает мастерски. Я с нетерпением предвкушаю каждую новую лекцию».
Но на четвертом курсе Эйнштейн почувствовал растущее неудовлетворение. Вебер преподавал только старую физику. Он полностью игнорировал некоторые из наиболее важных достижений последних десятилетий, включая открытие Джеймсом Кларком Максвеллом нового изящного набора уравнений электромагнетизма, из которого можно было вывести все электромагнитные явления: поведение магнитов, электрических разрядов, электрических цепей, радиоволны и свет. Эйнштейн вынужден был сам изучать единую теорию электромагнетизма Максвелла, читая новейшие книги, написанные физиками в других университетах, и можно предположить, что он не замедлил сообщить об этом Веберу. Его отношения с Вебером испортились.
В ретроспективе ясно, что из того, что Вебер игнорировал в своих лекциях, наиболее важным были появившиеся свидетельства трещин в фундаменте ньютоновской физики, фундаменте, кирпичами и цементом которого были концепции абсолютного пространства и абсолютного времени.
Абсолютное пространство Ньютона было тем самым пространством, с которым мы имеем дело в повседневной жизни, пространством, имеющим три измерения: восток-запад, север-юг, верх-низ. Из повседневного опыта, очевидно, что существует одно и только одно такое пространство. Это пространство, в котором находятся все люди, Солнце, все планеты и звезды. Все мы движемся через это пространство по различным путям и с разными скоростями, но, независимо от нашего движения, пространство одинаково для всех нас. Это пространство дает нам ощущение длины, ширины и высоты, и, независимо от нашего движения, все мы должны получать одинаковые результаты при измерении длины, ширины и высоты одного и того же объекта, если только все мы измеряем их достаточно точно.
Абсолютное время Ньютона — это наше обычное время, время, которое неумолимо движется вперед, вызывая наше старение, время, которое можно измерять высококачественными часами или вращением Земли и движением планет. Это время, течение которого одинаково для всего человечества, для Солнца, для планет и звезд. Согласно Ньютону, период обращения планеты или продолжительность речи политика должны быть одинаковы для любого из нас, независимо от нашего движения, если только все мы пользуемся для измерения достаточно точными часами.
Если бы ньютоновская концепция абсолютного пространства и времени вдруг оказалась разрушена, рухнула бы и вся система физических законов Ньютона. К счастью, год за годом, десятилетие за десятилетием, век за веком основные концепции Ньютона оставались незыблемыми, и на их основе один триумф следовал за другим во всех областях науки, от астрономии до электричества и термодинамики. До 1881 г., когда Альберт Майкельсон начал измерять скорость распространения света, не было даже намека на малейшую трещину в этом фундаменте.
Казалось очевидным, и законы Ньютона требовали этого, что если кто-то измеряет скорость света (или чего-то еще), то результат должен зависеть от того, как он сам движется. Если наблюдатель покоится в абсолютном пространстве, то он должен увидеть, что свет движется с одинаковой скоростью во всех направлениях. И наоборот, если наблюдатель сам движется сквозь абсолютное пространство, скажем, на запад, то должен увидеть, что свет, распространяющийся с востока на запад, замедляется, а свет, распространяющийся с запада на восток, ускоряется, так же как пассажир поезда, идущего на запад, видит, что птицы, летящие на запад, летят медленнее, а птицы, летящие на восток, — быстрее.
Для птиц скорость их движения устанавливает воздух. Отталкиваясь крыльями от воздуха, птицы одного вида движутся с одинаковой максимальной скоростью сквозь воздух, независимо от направления полета. Аналогично и для света, согласно ньютоновской физике, должна существовать субстанция, называемая эфиром, которая устанавливает его скорость распространения. Отталкиваясь электрическим и магнитным полем от эфира, свет должен распространяться всегда с одной и той же универсальной скоростью через эфир, независимо от направления. И поскольку эфир (согласно концепции Ньютона) покоится в абсолютном пространстве, покоящийся наблюдатель получит одинаковую скорость света для всех направлений, в то время как движущийся наблюдатель получит различные скорости света.
Учтем теперь, что Земля движется через абсолютное пространство, хотя бы потому, что она вращается вокруг Солнца. Она движется в одном направлении в январе и в противоположном шесть месяцев спустя, в июне. Соответственно, мы на Земле можем измерить разницу в скорости света в различных направлениях, и эта разница должна изменяться в течение года, хотя изменение это и очень невелико (примерно на 0,01 %), поскольку по сравнению со светом Земля движется очень медленно.
Проверка этого предсказания была отличной задачей для физи-ков-экспериментаторов. Двадцативосьмилетний американец Альберт Майкельсон попытался решить ее в 1881 г., используя созданный им прибор (называемый теперь «интерферометр Майкельсона»[50]), обладающий рекордной точностью. Но несмотря на все усилия, Майкельсон не смог обнаружить никаких признаков того, что скорость света меняется с направлением. Скорость света оказалась одинаковой всегда и во всех направлениях, как в его первой серии экспериментов, которые он провел в Потсдаме (Германия) в 1881 г., так и в последующей серии, которую Майкельсон провел в Кливленде (США, штат Огайо) вместе с химиком Эдвардом Морли в 1887 г. и которая отличалась гораздо большей точностью. Реакция самого Майкельсона на этот результат была сочетанием эйфории от сделанного открытия и беспокойства по поводу возможных следствий. Генрих Вебер, как и большинство физиков того времени, вообще отнесся к его результатам скептически.
Это было объяснимо. Интересные эксперименты обычно невероятно сложны — настолько сложны, что независимо от того, насколько тщательно они проводятся, ошибочный результат все равно возможен. Незначительное отклонение в работе установки, ничтожное неучтенное изменение ее температуры или колебание пола под ней может повлиять на конечный результат. Поэтому неудивительно, что и сейчас, так же как в конце XIX века, физики сталкиваются с тем, что результаты чрезвычайно сложных экспериментов порою противоречат друг другу или устоявшимся представлениям об устройстве Вселенной и ее физических законах. Свежим примером могут служить опыты, в которых, якобы, была обнаружена «пятая сила» (взаимодействие, которое не описывает современная, чрезвычайно успешная физическая теория), и другие опыты, показавшие, что такой силы нет. Проводились также эксперименты, в которых, как было заявлено, наблюдался «холодный термоядерный синтез» (явление, запрещенное обычными законами, если только физики правильно понимают эти законы), хотя другие эксперименты показывали, что этого не происходит. Почти всегда результаты, противоречащие устоявшимся представлениям, ошибочны. Тем не менее, иногда они все же оказываются верными и тогда становятся началом переворота в нашем понимании природы.
Одной из отличительных черт выдающегося физика является способность чувствовать, каким результатам можно доверять, а каким — нет, и на какие именно эксперименты следует обратить внимание. Техника будет совершенствоваться, любые эксперименты будут повторяться снова и снова, и истина неизбежно выяснится. Однако тот, кто хочет внести свой вклад в развитие науки и связать свое имя с великими открытиями, должен как можно раньше распознавать, какие результаты заслуживают доверия.
Несколько выдающихся физиков конца XIX века проверяли работы Майкельсона и пришли к выводу, что и конструкция установки, и сами измерения были сделаны чрезвычайно тщательно. Чутье говорило им, что это эксперимент высочайшего класса. Может быть, решили они, что-то действительно неверно в самой основе ньютоновской физики. В отличие от них, Генрих Вебер и большинство остальных физиков были уверенны в том, что со временем дальнейшие исследования поставят все на свои места, и ньютоновская физика восторжествует, как это уже много раз случалось. Раз так, не стоит даже упоминать эти опыты в университетских лекциях и морочить студентам головы.
Ирландский физик Джордж Ф. Фицджеральд был первым, кто по достоинству оценил результаты Майкельсона — Морли и стал анализировать их следствия. Сравнивая их с результатами других экспериментов, он пришел к неожиданному выводу, что ошибочным является понимание физиками того, что такое «длина» и, соответственно, что-то может быть неверным в ньютоновской концепции абсолютного пространства. В короткой статье, опубликованной в американском журнале
Ничтожное (на пять миллиардных долей) уменьшение размера в направлении движения Земли действительно могло объяснить нулевой результат опытов Майкельсона — Морли. Но признать наличие такого эффекта означало отказаться от существовавшего у физиков понимания поведения материи: среди известных сил не было такой, которая могла бы вызвать сжатие предметов в направлении их движения, даже на такую маленькую величину. Согласно существовавшему представлению о свойствах пространства и молекулярных сил внутри твердых тел, равномерно движущееся твердое тело всегда должно сохранять свою форму и размеры по отношению к абсолютному пространству, не зависимо от того, как быстро оно движется.
Хендрик Лоренц в Амстердаме тоже поверил результатам опытов Майкельсона — Морли. Кроме того, он принял всерьез предположение Фицджеральда о том, что движущиеся предметы сокращаются. Фицджеральд, узнав об этом, написал Лоренцу письмо с выражением благодарности, поскольку, как он писал, «я сам слегка посмеивался над своими взглядами». В поисках лучшего понимания Лоренц и, независимо, Анри Пуанкаре в Париже (Франция), а также Джозеф Лармор в Кембридже (Англия) заметили одну особенность в законах электромагнетизма, которая замечательно согласовывалась с идеей Фицджеральда о сокращении движущихся тел.
Если записать уравнения Максвелла для электрических и магнитных полей, измеренных наблюдателем, покоящимся в абсолютном пространстве, они принимают особенно простой и красивый вид. В частности, из одного из уравнений следует, что магнитные силовые линии не имеют начала и конца, т. е. всегда являются замкнутыми (см. рис. 1.1
1.1. Следствия одного из уравнений Максвелла, описывающих электромагнетизм, с точки зрения физики XIX века (ньютоновской физики), (а) Концепция магнитных силовых линий. Если положить стержневой магнит под лист бумаги, на котором рассыпаны металлические опилки, можно увидеть изображение силовых линий магнитного поля. Каждая линия выходит из северного полюса магнита, огибает его, входит в южный полюс и, проходя через магнит, замыкается. Таким образом, силовые линии — это замкнутые кривые, у которых нет начала и конца. С точки зрения математики утверждение о том, что магнитные силовые линии не имеют начал и концов — это одно из уравнений Максвелла в его простейшей и наиболее красивой форме, (б) Согласно ньютоновской физике, уравнение в такой форме справедливо вне зависимости от того, что наблюдатель делает с магнитом (например, даже если он трясет его изо всех сил) до тех пор, пока сам наблюдатель покоится относительно абсолютного пространства. Ни одна силовая линия не имеет начала или конца с точки зрения того, кто неподвижен, (в) С точки зрения наблюдателя на поверхности Земли, которая движется через абсолютное пространство, все выглядит гораздо сложнее. Даже если его магнит спокойно лежит на столе, некоторые силовые линии (примерно одна на сто миллионов) будут разорваны. Если наблюдатель будет трясти магнит, другая часть силовых линий (примерно одна из триллиона) будет разрываться и вновь замыкаться в процессе тряски. Хотя обрыв одной из ста миллионов и, тем более, из триллиона силовых линий — это слишком мало, чтобы такой эффект мог быть обнаружен в экспериментах XIX века, сам факт, что уравнения Максвелла предсказывают его, казался противоестественным Лоренцу, Пуанкаре и Лармору.
Здесь законы ньютоновской физики были недвусмысленны. Время должно быть абсолютно. Оно течет равномерно и неумолимо, с одинаковой скоростью для всех наблюдателей, независимо от их движения. Если ньютоновские законы верны, то движение не может вызвать замедление времени, так же как оно не может вызвать сокращение длины. К сожалению, точность часов, существовавших в конце XIX века, была совершенно недостаточна для проверки. Перед лицом научного и технического триумфа ньютоновской физики, триумфа, который был основан на абсолютности пространства, Лоренц, Пуанкаре и Лармор отступили.
Эйнштейн, будучи студентом в Цюрихе, был еще не готов взяться за решение столь сложных проблем, но он уже начинал размышлять о них. Своей подруге Милеве Марич (роман с которой становился у него все серьезнее) он писал в августе 1899 г.: «Я все более и более убеждаюсь, что электродинамика движущихся тел в ее сегодняшнем виде неверна». В течение последующих шести лет, становясь все более зрелым физиком, он будет исследовать эту проблему и идти к пониманию реальности сокращения длины и замедления времени.