Несерьезные Архимеды - Кривин Феликс Давидович 4 стр.


ТОЧКА НА ПЛОСКОСТИ

Не знала Точка ни забот, ни тревог, но пришло время и ей подумать о своем месте на плос-

кости.

— Я хочу стать центром окружности! — заявила Точка.

Что ж, по законам геометрии все точки равны и каждая из них может стать центром окружности. Для этого нужны только циркуль и карандаш, и ничего больше.

Но едва лишь к ней прикоснулся циркуль, Точка завопила:

— Ой! Больно! Ой! Что вы колетесь?!

— Но вы хотели стать центром окружности, — напомнил Циркуль.

— Не нужен мне ваш центр, не нужна мне ваша окружность, оставьте меня в покое!

Оставили Точку в покое. Но ненадолго. Должна же Точка занять какое-то место на плоскости!

— Я хочу стать вершиной угла, — заявила Точка на этот раз.

По законам геометрии вершиной угла тоже может стать каждая точка. Для этою на прямую, на которой она находится, достаточно опустить перпендикуляр.

Стали опускать на прямую перпендикуляр.

— Вы что, ослепли?! — закричала Точка при виде Перпендикуляра. — Вы падаете прямо на меня. Разве вам мало места на плоскости?

Растерялся Перпендикуляр, повис в воздухе.

— Погодите, дайте-ка мне, — сказала Секущая. — У меня эта Точка станет вершиной сразу четырех углов.

Но не тут-то было. При виде Секущей Точка прямо-таки забилась в истерике.

— Не секите меня! — рыдала она. — Я не привыкла, чтобы меня секли!

Что было с ней делать? Махнули на Точку рукой. Не стала она ни центром окружности, ни вершиной угла, а осталась простой точкой на простой прямой, параллельной тысячам других прямых.

СТЕПЕНЬ

Много лет прослужила Единица без единого замечания, и нужно же было как-то отметить ее заслуги!

Поэтому Единицу решили возвести в степень. Думали этими ограничиться, но опять Единица служит прилежно, а замечание — хоть бы одно!

Возвели ее еще в одну степень. И опять ни одного замечания. В третью степень возвели, в четвертую, в пятую — нет замечаний!

Далеко пошла Единица. Теперь она Единица в тысячной степени. Посмотреть на нее — обычная Единица, но как глянешь на степень — да, это величина!

А что изменилось от этого? Ничего, ровным счетом. Ведь Единица в тысячной степени — та же Единица.

И на тысячную долю не больше!

ПРОСТАЯ ДРОБЬ

У Числителя и Знаменателя — вечные дрязги. Никак не поймешь, кто из них прав. Числитель толкует одно, а Знаменатель перетолковывает по-своему. Числитель говорит:

— У меня положение выше, почему же я меньше Знаменателя?

А Знаменатель свое:

— Я-то числом побольше, с какой же стати мне ниже Числителя стоять?

Поди рассуди их попробуй!

И ведь что вы думаете — была такая попытка. Целое Число, которому надоело это брюзжание, сказало им напрямик:

— Склочники несчастные, чего вы не поделили? В то время, когда у нас столько примеров, столько задач…

— Тебе, Целому, хорошо, — проворчал Знаменатель, и Числитель (в первый раз!) согласился с ним.

— Знаменательно! — воскликнул Числитель. — Знаменательно, что именно Целое Число делает нам замечание!

— А кто вам мешает стать Целым Числом? Сложитесь с какой-нибудь дробью.

— Ладно, обойдемся без ваших задач и примеров, — сказал Числитель, а Знаменатель, придвинувшись к Целому Числу, выразил эту мысль более категорически:

— Проваливай, пока цело!

Целое Число махнуло на них рукой и приступило к очередным задачам.

А Числитель и Знаменатель призадумались. Потом Числитель нагнулся, постучал в черточку:

— Послушайте, — говорит, — может, нам и впрямь с другой дробью сложиться?

— Э, шалишь, брат, — возразил Знаменатель, — хватит с меня и одного Числителя!

— Если уж на то пошло, — обиделся Числитель, — мне тоже одного Знаменателя предостаточно.

Еще подумали.

Потом Знаменатель стал на цыпочки, постучал в черточку:

— Слышь, ты! А если нам так стать Целым Числом, без другой дроби?

— Можно попробовать, — соглашается Числитель. Стали они пробовать. Числитель умножится на два, и Знаменатель — не отставать же! — тоже на два. Числитель на три — и Знаменатель на столько же.

Умножались, умножались, совсем изнемогли, а толку никакого. Та же дробь, ни больше ни меньше прежней.

— Стой! — кричит Знаменатель. — Хватит умножаться. Делиться давай. Так оно вернее будет.

Стали делиться.

Знаменатель на два — и Числитель на два. Знаменатель на три — и Числитель на столько же. А дробь — все прежняя.

СУММА

И так, построились по росту: впереди Большое Слагаемое, за ним Среднее, а уж потом Самое Маленькое. Есть? Что там у вас, сзади?

Сзади высовывается Самое Маленькое Слагаемое:

— Я хочу сказать: если оно большое, так ему, значит, впереди? А если я маленькое, так мне, значит, сзади?

Сумма задумывается. Она что-то считает, прикидывает, потом говорит:

— Справедливое замечание, придется его учесть. Итак, построились по росту: впереди Самое Маленькое Слагаемое, за ним Среднее, а уж потом Большое. Есть? Что там у вас, сзади?

— Неудобно как-то, — басит Большое Слагаемое. — Я все-таки самое большое, за что же меня в конец?

Опять думает Сумма. Да, неудобно получается.

— Сделаем так: впереди Самое Маленькое Слагаемое, за ним Большое, а уж потом Среднее. Построились? Что там у вас?

— Нег, все-таки это несправедливо, — говорит Среднее Слагаемое. — Почему именно я должно стоять сзади всех?

Вот именно — почему?

— Действительно, — соглашается Сумма, — придется кое-что изменить. Построимся так: впереди Большое Слагаемое, за ним Среднее, а уж потом — Самое Маленькое.

— Но я опять сзади всех! — тянется сзади Самое Маленькое Слагаемое.

— И то правда. Тогда сделаем так…

Строит Сумма, перестраивает. Можно того наперед, а можно и этого. Ей-то, Сумме, лично все равно: от перестановки мест слагаемых Сумма не меняется.

ТРЕУГОЛЬНИК

Задумал Угол треугольником стать. Нашел подходящую Прямую линию, взял ее с двух сторон за две точки — и вот вам, пожалуйста, чем не треугольник?

Но Прямая оказалась строгой линией. Сдерживает она угол, ограничивает. Теперь ему не та свобода, что прежде.

А вокруг, как назло, ломаные линии вертятся, выламываются:

— Ну как ты, Угол, со своей Прямой? Ладите?

Что им ответишь? Молчит Угол. Молчит, а сам думает: «Зря я такую прямую линию взял. Ломаные куда удобней!»

За этой мыслью пришла и другая: «А вообще-то, чем я рискую? Можно такую ломаную найти, что она с моей прямой и не пересечется».

Такая ломаная линия быстро сыскалась. Соединил ею Угол те же две точки, что и Прямая соединяла, и — доволен.

Потом еще одной ломаной обзавелся, потом еще одной. А Прямая верит Углу, ни о чем не догадывается.

Но вот ломаные линии, как набралось их много; стали между собой пересекаться. Так закрутили Угол, так завертели, что его среди них и не видать.

Еле выпутался бедняга.

«Хватит, — решил, — возиться с этими ломаками. Лучше уж прямой линии держаться».

И опять остался Угол со своей Прямой. Дружно живут. Хороший треугольник.

Оно и понятно: через две точки, как свидетельствует геометрия, можно провести только одну прямую.

А ломаных — сколько угодно.

ПРОИЗВЕДЕНИЕ

— Смотрите, — говорят соседям, — это наше произведение. Ну, каково? Двузначное число, не то что мы, однозначные.

А произведение и не смотрит на сомножителей. Воротит нос, боится, как бы знакомые сотни чего не подумали. Как-никак сомножители — однозначные числа, стыдно произведению иметь такую родню.

— Произведение ты наше единственное, погляди на нас, хоть словечко молви!

Куда там! До того ли сейчас произведению! Произведение давно забыло, кто его произвел на свет. Теперь произведению с самой Тысячей помножиться в пору!

ВЫНЕСЕНИЕ ЗА СКОБКИ

Лишь когда его выносят за скобки, все начинают понимать, что это было за число.

Зато когда его вынесли за скобки, все сразу поняли, что это было за число.

— Это был наш общий множитель!

— Это был наш общий делитель!

Так число приобретает значение. После того, как его вынесут.

УРАВНЕНИЕ С ОДНИМ НЕИЗВЕСТНЫМ

Разные числа — большие и малые, целые и дробные, положительные и отрицательные — впервые встретились в уравнении.

Они любезно, хотя и сдержанно, обменялись приветствиями, а затем стали знакомиться.

— Четверка.

— Очень приятно. Двойка.

— Тройка.

— И я Тройка. Значит, тезки!

— Одна Четвертая…

— Две Четвертых…

— Три Четвертых…

Очень быстро все перезнакомились. Только одно число не назвало себя.

— А вас как зовут? — стали спрашивать у него числа.

— Не могу сказать! — важно ответило это число. — У меня есть причины…

— Ах, подумайте, какие загадки! — затараторила Одна Девятая. — Как можно жить в обществе и совсем не считаться с его мнением!

— Спокойно, спокойно, — вмешался Знак Равенства, самый справедливый знак во всем задачнике. — Все выяснится в свое время. А пока пусть это число остается неизвестным. Мы назовем его Иксом. Что поделаешь, будет у нас уравнение с одним неизвестным.

Все числа согласились со Знаком Равенства, но теперь они вели себя еще сдержанней, чем даже во время знакомства. Кто его знает, что за величина этот Икс? Здесь нужно быть осторожным.

Некоторые попытались заискивать перед. Иксом, по он так важно себя держал, что даже у дробей отпала охота добиваться его расположения.

— Ну нет, — прошептала Двойка Четверке. — Ты как хочешь, а я перебираюсь в другую сторону уравнения. Пусть я буду там с отрицательным знаком, но зато не буду видеть этой персоны.

— И я тоже, — сказала Четверка и вслед за Двойкой перебралась в другую сторону уравнения. За ними последовали две тезки — Тройки, а потом и дроби — Одна Четвертая, Две Четвертых, Три Четвертых — и все остальные числа.

Икс остался один. Впрочем, это его не встревожило. Он решил, что числа просто не хотят его стеснять.

Но числа решили по-другому. Они сложились, перемножились и поделились, а когда все необходимые действия были произведены, Икс ни для кого уже не был загадкой. Он оказался мнимой величиной, такие тоже встречаются в математике.

То-то он так мнил о себе, этот Икс!

БИССЕКТРИСА

Заспорили Стороны угла, никак между собой не поладят.

— Я, со своей стороны, считаю… — говорит одна Сторона.

— А я считаю, со своей стороны… — возражает ей другая.

Ничего не поделаешь: хоть у них и общий угол зрения, но смотрят-то они на мир с разных сторон!

Проходила как-то между ними Биссектриса. Обрадовались Стороны: вот кто будет их посредником! Спрашивают Биссектрису:

— А вы как думаете?

— А ваше мнение каково?

Стоит посредник посрединке, колеблется.

— Ну скажите же, скажите! — тормошат Биссектрису со всех сторон.

— Я думаю, вы совершенно правы, — наконец произносит Биссектриса, кивая в правую сторону.

— Ах, какая вы умница! — восхищается правая Сторона. — Как вы сразу все поняли!

А Биссектриса между тем поворачивается к левой Стороне:

— Ваша правда, я тоже всегда так думала.

Левая Сторона в восторге:

— Вот что значит Биссектриса! Сразу сообразила, что к чему!

Стоит Биссектриса и знай раскланивается: в одну сторону кивнет — мол, правильно, в другую сторону кивнет — мол, совершенно верно. Мнение Биссектрисы ценится очень высоко, поскольку оно устраивает обе стороны.

ВЕЛИЧИНА

Позавидовала Единица Десятке: «Конечно, с такой кругленькой суммой, как этот ноль, я бы тоже кое-что значила!»

Поэтому, когда Единице удалось наконец, обзавестись нолем, она не поставила его сзади себя, как Десятка, а выставила наперед — пусть, мол, все видят!

Получилось очень внушительно:

0,1.

Потом какими-то способами Единица добыла еще один ноль. И тоже выставила его наперед. Глядите, дескать, какие мы:

0,01.

Единица стала входить во вкус. Она только и думала, как бы скопить побольше нолей, и после долгих стараний ей удалось собрать их в большом количестве.

Теперь Единицу не узнать. Она стала важной, значительной. Куда до нее какой-то Десятке!

Теперь Единица выглядит так:

0,00000000001.

Вот какой величиной стала Единица!

ФИГУРА

Прибежала Трапеция к Окружности.

— Ох, ты даже себе не можешь, не можешь представить! Сверху плоско, снизу выпукло, а о боках нечего и говорить!

— Что плоско? Что выпукло? Ты объяснишь толком?

— Вот послушай, — стала объяснять Трапеция. — Появилась у нас в учебнике новая фигура. Откуда она взялась, никто не знает. Может, ее кто нарисовал так, для смеха…

— Что же это за фигура?

— Как, ты еще не поняла? Ну пошли, сама посмотришь.

Пошли они смотреть на Фигуру. А там уже, такое творится! Треугольники, Квадраты, Параллелограммы… А в центре эта самая Фигура красуется…

При виде ее Окружность так и покатилась со смеху, но не успела откатиться особенно далеко — остановилась, призадумалась.

— Ты знаешь, — сказала она Трапеции, — в ней что-то есть. Вот эта линия, обрати внимание. Она выглядит вполне Современно.

— Пожалуй, — согласилась Трапеция. — А поверхность? Видишь, какая у нее поверхность? У нас все слишком плоско…

— Да, мы привыкли к симметрии, — вздохнула Окружность. — А кому теперь нужна симметрия?

Подоспели и другие геометрические фигуры. Они с восхищением глядели на незнакомую Фигуру и в один голос вздыхали:

— Как это асимметрично!

И вот — Фигуры давно уже нет, а поглядите, что делается в учебнике. Ни одной геометрической фигуры невозможно узнать.

Все они на одно лицо: сверху плоско, снизу выпукло, а о боках нечего и говорить.

Мода, ничего не поделаешь.

Закон моды!

Вопреки всем известным законам геометрии.

Назад Дальше