Живой прожектор
Макси, миди, мини
В 1899 году будущего академика Леонида Исааковича Мандельштама исключили из Новороссийского университета – так тогда назывался университет в Одессе. Мандельштаму не простили участия в студенческих выступлениях. Лишенный возможности закончить свое образование на родине, Мандельштам переехал в Страсбург. Здесь он поступил в университет, а позже начал свою научную деятельность в знаменитом физическом институте, еще хранившем традиции одной из лучших экспериментальных школ мира. Уже в студенческие годы его увлекала теория колебаний, которой он посвятил всю свою жизнь.
Мандельштам – один из классиков физической науки. Его всегда отличала не только глубина и широта суждений, но и ясность, лаконичность и законченность мысли. Занимаясь всю жизнь колебаниями, он тем не менее так и не рискнул дать определение данному виду явлений. Видимо, сделать это очень трудно.
Чтобы объяснить, что такое звуковые колебания и как они себя ведут, придется начать издалека.
Наиболее удобно наблюдать волну на поверхности жидкости. Бросьте камень в пруд или лужу, и по поверхности побегут концентрические волны, постепенно становясь все ниже и незаметнее, пока полностью не затухнут.
Когда смотришь на разбушевавшееся море, невольно создается впечатление, что громады вод, вздыбившись под напором ветра, волна за волной, отправились гулять по океанским просторам. Это иллюзия. Приглядитесь к предметам, пляшущим в хаосе пены. Они взлетают на гребни волн, но пробегают с ними совсем немного и, скатившись по пологому заднему склону, оказываются примерно на том же месте, откуда начали свой бег. Накатывающиеся волны снова и снова подхватывают их, но, взметнувшись на гребень, они всякий раз возвращаются назад, совершив круг по замкнутой орбите. Значит, и вода никуда не перемещается. Она просто вспучивается над поверхностью волной и тут же опадает, образуя глубокие провалы.
Вода помогла великому Галилею убедиться, что предмет, издающий звук, колеблется, порождая вокруг себя волны.
Экспериментальной установкой служил хрустальный бокал, почти до краев опущенный в большую лохань с водой. Галилей легкими ударами заставил бокал звучать и увидел, как рябью разбегались вокруг крохотные радиальные волны.
Развитие акустики шло медленно. Только в 17 веке стало окончательно ясно, каким образом колебания стенки колокола воспринимаются нашими ушами как звук. Оказалось, что для этого необходима какая-то среда, способная передать колебания от звучащего предмета к нашему уху. Немецкий ученый Отто фон Герике сумел убедиться, что такой средой является воздух. По мере того как ученый выкачивал его из-под стеклянного колпака, помещенный внутри колокол звучал все слабее и слабее.
Волны на границе двух сред – только частный случай колебательных процессов. Если ударить в колокол, вверх, вниз, вправо и влево – в общем, во все стороны побегут, расширяясь, сферические волны. Правда, мы их не увидим. Разве что солнечный луч высветит множество пылинок. Неподвижные до удара, они начнут двигаться по замкнутым орбитам, всегда возвращаясь в исходную точку. Точно такие же движения совершают молекулы газа. Если бы можно было их видеть, мы обнаружили бы, что в отдельные мгновения они стремятся собраться все вместе, в другие – рассредоточиться. Следовательно, сущностью звуковых волн является ритмическое изменение давления.
Аналогичным образом волны распространяются в любых средах, в том числе в жидкостях и твердых телах. В этом сумел убедиться все тот же Герике. В качестве звукоизлучателя он использовал уже испытанный колокол, а звуковоспринимающим прибором стали рыбы. Ученый бил в колокол на берегу пруда и бросал в воду хлебный мякиш. Вскоре звуки колокола стали сзывать к берегу сонмы рыб. Видимо, проще было бы нырнуть в пруд и самому убедиться, что звуковые волны могут распространяться в воде, но это почему-то не пришло Герике в голову.
Человеческое ухо способно воспринять, т. е. услышать как звук, лишь колебания давления воздуха, совершающиеся с частотой от 20 до 20 000 в секунду. Звук перестает восприниматься как непрерывный, когда давление меняется реже 16–18 раз в секунду. В акустике столь редкие колебания давления называют инфразвуками. За сменой давлений свыше 20000 раз в секунду человеческое ухо не способно уследить, а потому и не может информировать о них мозг, и нам кажется, что вокруг царит полная тишина. Такие колебания называются ультразвуками.
Слово «ультра» в переводе на русский язык означает «сверх, за пределами, по ту сторону». Не следует думать, что ультразвуковые колебания имеют какую-то иную физическую природу, отличную от природы обычных звуковых волн. Большинство животных отлично воспринимают неслышимые для нас ультразвуковые колебания. Наш верный спутник – собака – способна улавливать ультразвуки с частотой до 38 000 колебаний в секунду. На этом основаны многие цирковые номера. Собаке математику задают задачу: сколько будет два плюс пять? Дрессировщик спешит подсказать ответ, подавая с помощью специального ультразвукового свистка семь неслышимых для зрителей сигналов. В ответ на каждый сигнал четвероногий артист тявкает, приводя зрителей в восторг своими способностями.
Окружающий мир полон неслышимых для нас звуков. Однако огорчаться не стоит. Длительное шумовое воздействие способно вызвать серьезные заболевания органов слуха и центральной нервной системы. Человек создал вокруг себя такой шумный мир, что сам от этого страдает. Большинство машин и механизмов, кроме низкочастотного грохота и шума, производят еще и ультразвуки, к счастью, не мешающие нам спать.
Эти коварные волны хотя и не воспринимаются человеческим ухом, тем не менее при определенной интенсивности могут быть опасны дли нашего здоровья.
Для успешной эхолокации необходимо знать скорость звука. Артиллерийская стрельба позволила заметить, что звук достаточно тихоходен, а затем помогла с высокой точностью измерить скорость его распространения. Члены Французской академии наук, проводившие эксперимент, расположили на холмах на расстоянии около 30 км одна от другой две пушечные батареи. Пушки палили два раза в час, а наблюдатели определяли, через сколько времени после вспышки орудийного выстрела их ушей достигал звук. Оказалось, что 30 км звук покроет примерно за две минуты. Чтобы обежать земной шар по экватору, звуку потребуется больше суток.
Скорость распространения звуковых волн не связана ни с причиной, их породившей, ни с их частотой. Она зависит главным образом от характера и состояния среды, в которой распространяются волны. В воде звук бежит в четыре с лишним раза быстрее, чем в воздухе. За секунду он покрывает более полутора километров. Если в воде распространяются волны с частотой колебания 20 000 раз в секунду, то на протяжении полутора километров (расстояние, которое звук в воде пробежит за одну секунду) должно уложиться 20 000 волн. При частоте колебаний 100000 раз в секунду их должно уложиться в 5 раз больше. Следовательно, длина волн будет в 5 раз меньше. Таким образом, ультразвуковые колебания порождают миниволны, инфразвуковые – макси, а волны слышимого нами диапазона относятся к разряду мидиволн. Галилей первый удостоверился, что высота звука зависит от длины его волны.
Проводя опыты со звучащим в воде бокалом, он обратил внимание на то, что, если высота звука становилась на октаву выше, рябь делалась в два раза мельче.
Длина звуковой волны находится в пропорциональной зависимости от скорости звука. Чем большее расстояние за единицу времени пробежит звук, тем длиннее должны быть волны.
Поэтому при одинаковой частоте звуковая волна, распространяясь в воздухе, будет в 4,5 раза короче, чем в воде. Например длина волны ультразвука с частотой 50 кГц (т. е. 50000 колебаний в секунду) в воздухе равна 6,8 мм, а в воде 31 мм.
Важной характеристикой звука является его интенсивность. Барабанная перепонка начинает колебаться за счет энергии, переносимой от источника звука с помощью звуковых волн. Чем больше амплитуда звуковых волн, чем значительнее переносимая ими энергия, тем интенсивнее, сильнее звуки.
Необходимо помнить, что сила звука, количество энергии, которую несут звуковые волны, никак не отражается на скорости их распространения. В этом легко убедиться. Рябь от брошенного в воду камня, разбегаясь от места его падения, постепенно затухает, но ее скорость остается постоянной. Это знал еще Галилей. Присутствуя на церковных богослужениях, он продолжал оставаться физиком. Наблюдая, как в соборе раскачиваются люстры, он заметил, что, какой бы ни была амплитуда их движения, период колебания оставался постоянным. Ученый не мог принести в храм водяные часы, которыми обычно пользовался. Подобного кощунства церковь бы не простила. Пришлось прибегнуть к подручным средствам. Прибором для измерения времени стало сердце. Не убежденный в совершенстве собственного хронометра, он компенсировал его неточность количеством экспериментов. У Галилея хватило терпения сделать тысячу измерений и убедиться в своей правоте[3].
Что происходит со звуковой волной, когда она встречает на своем пути препятствие? Вернемся к луже, куда мы бросили камень. Тонкие былинки, торчащие из воды, практически не мешают разбегаться круговым волнам. Толстые стебли тростника уже являются для волн помехой, а торчащий из воды камень разрывает кольцо. За ним вода не морщинится рябью.
Подобным образом ведут себя и звуковые волны. Если их длина меньше препятствия, они от него отразятся, а позади возникнет звуковая тень. Звук туда не проникнет. Звуковая волна, изменившая направление своего движения, и есть эхо.
Чтобы получить эхо от мелких предметов, особенно в воде, нужно использовать ультразвуковые посылки с очень короткой звуковой волной.
Характер звуковых волн зависит от их длины. Величина звукоизлучателей слышимых нами звуков обычно незначительна в сравнении с длиною излучаемых звуковых волн. В этом случае звуковые волны разбегаются от излучателя во все стороны. Иные взаимоотношения возникают при генерации ультразвуков. Здесь габариты излучателей могут быть существенно больше длины волны излучаемого звука. Такой излучатель будет порождать плоские волны. Они распространяются в направлении, перпендикулярном к плоскости излучателя.
Возникает звуковой луч – узкий пучок звуковых волн. Он позволяет сконцентрировать всю энергию звука на нужном направлении, послать звуковую посылку дальше и получать более громкое эхо. Интенсивность звука резко возрастает по мере увеличения частоты колебаний. Генерировать ультразвуки, обладающие высокими энергиями, проще, чем слышимые звуки такой же силы. Поэтому при эхолокации выгодно использовать ультразвук.
У ультразвука есть и обратная сторона. Он очень быстро затухает. Чем выше частота звука, тем быстрее идет его поглощение. При увеличении частоты в 10 раз затухание будет происходить в 100 раз быстрее, а следовательно, резко сократится расстояние, на которое он распространится. И все-таки для эхолокации выгоднее применять ультразвук, чем более низкие звуки, так как последние трудно генерировать узким пучком. Распространяясь во все стороны, более низкий, слышимый нами звук не только поглощается средой, но и рассеивается все в большем объеме. В результате его интенсивность быстро падает и он затухает. Учитывая, что затухание ультразвуков в воде происходит в 1000 раз медленнее, чем в воздухе, можно с уверенностью сказать, что водные животные для эхолокации должны обязательно пользоваться ультразвуком.
Однако такой локатор может служить только для зондирования ближайшего пространства. Для дальней ориентации он не годится.
Откуда что берется
Когда жизнь еще только зарождалась, звуковая обстановка на нашей планете была довольно однообразной. Иногда громыхал гром или посвистывал ветер. Кое-где тишину нарушали срывающиеся со скал водопады, шум морского прибоя да грохот вулканов. Кого тогда на Земле могли интересовать эти звуки? Только когда появились высокоразвитые животные, научившиеся активно передвигаться, странствовать по белу свету и пожирать друг друга, на Земле появились «интересные» звуки. Это были звуки биологического происхождения. Их создавали сами животные, и, естественно, они содержали известную информацию о самих источниках звука. Подобной информацией стоило заинтересоваться.
Интерес к звукам биологического происхождения послужил толчком к развитию звукового анализатора у далеких предков современных животных. Когда звукоулавливающие органы достигли известного совершенства, животные смогли использовать звуки и для взаимного обмена информацией.
У них возникла потребность специально производить звуковые сигналы.
Основа любого музыкального инструмента – вибратор, создающий звуковые волны. Им может быть любое упругое тело, способное колебаться от толчка, удара или трения. Если звук нужно усилить, используется резонатор. Для этой цели чаще всего служит воздух. Он упруг. Столбик газа вибрирует по всей своей длине, как стальная пружина. Он может колебаться с любой частотой, но колебания воздуха скоро затухают. Резонировать могут и стенки полости.
Известны музыкальные инструменты, состоящие из одних вибраторов. Это ксилофон, тарелки, колокольчики и колокола. У флейты резонирует столбик воздуха. Ее стенки в усилении звука участия не принимают. У медных духовых инструментов – труб, валторн – вибрирует и воздух, и металл стенок.
Получается значительное усиление звука. «Музыкальные инструменты» животных или состоят из одного вибратора, или снабжены резонатором. Им может быть мембрана, столбик воздуха или стенки полости, где газ (не обязательно воздух) находится под некоторым давлением.
Природа снабдила живые организмы звукогенераторами самых разных конструкций. У насекомых они достаточно примитивны. Перепончатокрылые пользуются грубыми смычковыми инструментами вроде контрабаса. Саранча водит лапкой по своим жестким крыльям. Кузнечики извлекают звук трением надкрылий. У сверчков на трущейся поверхности крыла находится 150 треугольных призм, а вибрация четырех перепонок усиливает звук.
Удивительным музыкальным инструментом – цимбалами – обладают жители жарких стран – цикады. Поют только самцы.
У них на нижней стороне первого сегмента брюшка находятся две выпуклые пластины. Их и называют цимбалами. Каждая пластина снабжена специальными мощными мускулами. Они втягивают выпуклую часть пластины внутрь и мгновенно отпускают. Втягивают и отпускают. Звук возникает по такому же принципу, как у металлической масленки или консервной банки, когда продавишь пальцем ее дно, а затем позволишь ему с характерным звуком занять прежнюю позицию. Стрекотание цикад слышится в любое время суток. Особенно неистовствуют они с наступлением темноты. Трудно представить южную ночь без неумолчного гомона цикад. Чрезвычайно сильные голоса у тропических видов. Их песня напоминает звук циркульной пилы или стрекотание мотоцикла, а по громкости не уступит пронзительному свистку паровоза.
Умеют издавать самые различные звуки и рыбы, хотя специальных звукогенераторов у них, по-видимому, нет. Некоторые издают звуки за счет трения жаберных крышек. Кариевые рыбы скрежещут зубами, спрятанными глубоко в глотке.
Многие рыбы пользуются плавательным пузырем, работающим как резонатор. Звук возникает благодаря сокращению специальных барабанных мышц, вызывающих колебания его стенок.
С помощью этих несложных устройств рыбы производят стуки, скрежет, удары, свисты, скрипы, всхлипывают, клохчут, мурлыкают, фыркают. Желтая макрель, встретив свою подругу, крякает от удовольствия. Рыба-ангел хрюкает, как поросёнок. Бычок-кругляк во время нереста скрипит, подзывая самку, а увидев ее, начинает квакать. Черная рыба лает по собачьи, а морские собачки предпочитают хрюкать. Морской петух – подумать только! – чтобы подать сигнал опасности, «кудахчет» курицей. Рыба-лоцман на ходу постукивает, по-видимому, для того, чтобы ведомая ею акула не отвлекалась.
Особенно шумно ведут себя рыбы во время брачных игр. Бычок-кругляк верещит, длиннорылый бычок-подкаменщик жужжит. Зеленушка-оцеллята, перед тем как подраться, цокает. Бычок-кругляк, охраняя гнездо, рычит. Рыба-дикобраз скрежещет, как ржавая дверная петля. Рябчик гризеус, выражая угрозу, барабанит, а сахалинский подкаменщик урчит. Испуганный спинорог свистит, чирикает, щелкает.