Черная маска из Аль-Джебры - Левшин Владимир Артурович 10 стр.


Попробуйте подсчитать, сколько это килограммов риса, если каждое зернышко в среднем весит 0,0182 грамма. Знаете, что получится? Больше ста шестидесяти семи триллионов килограммов! Стоит ли доказывать, что моя задача хоть и проста, но практически невыполнима?

Шестерка поклонилась и села. Ей долго хлопали. Потом поднялась латинская буква Эн. Она сказала так:

— Уважаемая Шестерка познакомила нас с геометрической прогрессией, где все числа непрерывно растут. Такая прогрессия называется возрастающей. Я позволю себе занять ваше внимание сразу двумя геометрическими прогрессиями — возрастающей и убывающей. И сделаю это на одном и том же примере. Задача моя будет так же проста, как предыдущая, и так же невыполнима. Моя предшественница рассказала прелестную сказку об изобретателе шахмат и коварном шахе. Позвольте и мне задать вам задачу, связанную с шахматами.

Эн вынула из кармана платок, развернула его и показала публике. На платке были нарисованы шестьдесят четыре квадрата, черные и белые, — как на шахматной доске.

— Будем считать, — продолжала Эн, — что этот платок заменяет нам шахматную доску. Обратите внимание — толщина платка равна 0,1 — одной десятой миллиметра. Складываю платок пополам. Теперь его толщина стала вдвое больше: две десятых миллиметра. Зато и площадь его стала меньше в два раза. Складываю платок еще раз вдвое. Теперь его толщина в четыре раза больше первоначальной, но и площадь уменьшилась в четыре раза. Я предлагаю складывать этот платок вдвое до тех пор, пока возможно. А потом продолжайте складывать мысленно.

Эн бросила платок в зал, кто-то его подхватил и стал перегибать: раз, второй, третий… Перегнул в шестой и крикнул:

— Готово! Теперь видна только одна клетка. Толщина платка увеличилась в шестьдесят четыре раза. Ничего невозможного тут нет.

— Вы сложили платок только шесть раз, — возразила Эн самонадеянному зрителю, — а надо было шестьдесят четыре! Понимаете разницу? Если бы вам удалось это сделать, толщина платка стала бы такой большой, что он перерос бы горы, миновал солнце и уперся бы в какую-нибудь отдаленную звезду.

— А вы докажите! — крикнули в зале.

Тогда Эн стала решать задачу на доске.

— Неужели вы не догадались, что я почти повторила предыдущую задачу? После каждого перегибания толщина платка увеличивается вдвое и возрастает по закону геометрической прогрессии: 2, 4, 8, 16, 32, 64 и так далее. Разница только в том, что после шестидесяти четырех перегибаний толщина платка станет больше не в 263, а в 264 раз. Оно и понятно: ведь эта прогрессия начинается не с 20 — двух в нулевой, а с 21 — двух в первой степени. Толщина развернутого платка 0,1 миллиметра. Чтобы вычислить толщину сложенного платка, надо 0,1 умножить на 264. Получается 1 844 674 407 371 километр.

Один триллион восемьсот сорок четыре миллиарда шестьсот семьдесят четыре миллиона четыреста семь тысяч триста семьдесят один километр.

А ведь расстояние от Земли до Солнца всего-навсего около ста пятидесяти миллионов километров!

Кажется, условие состязания выполнено: задача проста и практически невыполнима.

— А где же обещанная убывающая прогрессия? — спросил Сева.

— Да здесь же, — ответила Эн. — Ведь в то время как толщина платка увеличивается, площадь его все время уменьшается: 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, и так далее. Это и есть убывающая геометрическая прогрессия. После шестидесяти четырех перегибаний площадь станет в 1/264 раз — в одну вторую, взятую в шестьдесят четвертой степени раз, меньше первоначальной. И если бы мы складывали платок дальше, то она все время приближалась бы к нулю, а толщина (или высота) стремилась бы к Великанам в Бесконечность. Вы согласны? Тогда благодарю за внимание.

В зале снова зашумели, захлопали. Барон Мюнхгаузен позвонил в колокольчик и сказал:

— Жюри одинаково восхищено и той и другой задачей. Обеим участницам вручается первый приз.

Он передал победительницам шахматные доски с красивыми фигурами из слоновой кости и добавил:

— Меня так заинтересовали оба выступления, что следующее путешествие я совершу в Бесконечность. А потом — кто знает? — может быть, доберусь и до Нуля!

Барон поклонился. Соревнования кончились, и мы отправились спать. Ведь завтра нам идти на строительство! А перед этим не мешает хорошенько отдохнуть.

Олег.

Новые открытия Нулика

Здравствуйте, ребята! Ну и работу вы нам задали! Теперь мы только и делаем, что играем в шахматы. Каждый сам смастерил себе доску и фигуры. Играем с утра до вечера — то друг с другом, а то и каждый сам с собой. Но я все-таки успел сделать открытие: по шахматной доске сразу видно, что Карликания и Аль-Джебра друзья. Ведь каждая шахматная клетка имеет свое обозначение, которое состоит из цифр и букв. Например,

Стали спорить, как надо писать. Положили две доски одну под другой. На одной числа написаны внизу, слева направо, на другой — вверху, справа налево. Числа, одинаково отстоящие от края, оказались друг против друга. Прямо как на палке у фокусника!

Я попробовал сложить каждую пару, но одинаковых чисел не получилось. Понятно: ведь прогрессия-то не арифметическая, а геометрическая! Тогда я их перемножил и сделал второе открытие: все произведения оказались совершенно одинаковые:

1 Х 128 = 128;

2 X 64 = 128;

4 X 32 = 128;

8 X 16 = 128.

Да, теперь я уже не тот Нулик, что прежде. Меня и вправду не узнать. А все ваши письма!

Дальше считать зерна никто не захотел — кому же охота писать такие огромные числа? Но один Нулик задал интересный вопрос: если на шестьдесят четвертую клетку надо положить девять с лишним квинтиллионов зерен, то сколько всего зерен будет на доске, если, конечно, заполнить все клетки?

— Что тут думать! — сказал другой Нулик. — Всего на доске будет зерен два в шестьдесят третьей степени. То есть вот эти девять квинтиллионов.

— Ничего подобного, — возразил третий, — девять квинтиллионов будет только на последней клетке, а на всей доске во много раз больше.

Они заспорили, а я снова посмотрел на свою шахматную доску, где в первом ряду написана геометрическая прогрессия: 1, 2, 4, 8, 16, 32, 64, 128. После треугольника Паскаля я вообще стал очень внимательно рассматривать числа — все время ищу закономерности! Вот и сейчас сложил первый член прогрессии со вторым: 1 + 2 = 3. Сумма их оказалась на единицу меньше третьего члена — четверки. Потом я сложил 1 + 2 + 4. Получилось семь. А это на единицу меньше восьми. 1 + 2 + 4 + 8 = 15. И это тоже меньше шестнадцати на единицу. Выходит, сумма всех предыдущих членов этой геометрической прогрессии меньше последующего всегда на единицу. А это значит, что на шестидесяти трех клетках шахматной доски будет столько же зерен, сколько на последней, шестьдесят четвертой, только на одно зернышко меньше. А всего на доске зерен будет в два раза больше, чем на последней клетке, минус единица: 2 * 263 — 1. А это ведь все равно что 264 — 1.

Так я сделал третье открытие. И для этого мне не понадобилось ни писать всю прогрессию до конца, ни умножать девять квинтиллионов с хвостиком на два. Хорошая штука алгебра!

Нулик-Шахматист.

Волшебная практика

(Сева — Нулику)

Мы чуть не опоздали к началу рабочего дня. И все из-за Тани. На стройках, говорит, всегда пыль и грязь. Как бы мне, говорит, там не испортить любимого платья в оборочках. Наконец она появилась в комбинезоне и сапогах, на голове косынка, защитные очки. Прямо хоть снимай для газеты: «Знатная электросварщица Татьяна Н.».

Девчонок хлебом не корми — дай надеть какую-нибудь обновку. Я-то знаю, что не платья ей жалко, — просто захотелось покрасоваться в комбинезоне.

Ну и лицо у нее было, когда она увидела, что строительство больше похоже на ухоженную детскую площадку, где ребята заняты разными техническими играми — пилят, вырезают, конструируют… Только «игрушки» здесь были гораздо крупнее. Кружевные стрельчатые краны легко передвигали в воздухе разноцветные пластикатные детали.

К нам подошла нарядная латинская буква Эф. Она удивленно покосилась на Танин костюм:

— Хотите познакомиться с нашим экспериментальным строительством? Я вас провожу.

Первым долгом поинтересовались, что здесь строят.

— Да все, что угодно, — ответила Эф. — Дома, машины, бассейны…

Мы залюбовались высоким домом из разноцветных кубиков… Он вырос прямо на наших глазах — ни дать ни взять воздушный замок. И как же мне жалко стало, когда этот замок вдруг рассыпался, а на его месте возникло длинное двухэтажное здание с плоской крышей.

— Охота была строить, а потом разрушать! — подосадовал я.

Но Эф объяснила, что здесь не просто строят, а делают расчеты, которые тут же проверяют на практике. Я подумал, что если это и практика, то, во всяком случае, волшебная.

К нам подошел солидный карликан, Девятка.

— Здравствуйте, — обратился он к Эф. — Мы строим дом. Нам надо вырыть котлован для фундамента. Имеются три экскаватора. Первый может вырыть котлован за четыре часа, второй — за три, третий — за двенадцать. Через сколько часов будет готов котлован, если все три экскаватора работают одновременно? Это очень важно! Без этого я не смогу составить график строительства.

— Обратитесь к Главному Составителю, — ответила Эф.

Мы переглянулись.

— Нельзя ли и нам повидать Главного Составителя? — спросила Таня.

— А вы разве умеете решать уравнения? — поинтересовалась Эф.

Таня только покраснела. А я сказал напрямки, что мы об этом понятия не имеем.

— В таком случае вам придется начать с азов! Чтобы решить уравнение, следует прежде всего познакомиться с отрицательными числами.

Ну, это-то мы знали!

Эф облегченно вздохнула:

— Тогда я могу зачислить вас на строительство в качестве практикантов.

— И мы сейчас же начнем составлять уравнения? — брякнул я.

— О, до этого далеко. Сперва придется поработать в весовой.

Что ты скажешь? Опять отсрочка! В кармане лежит готовая задача, а ты, изволь радоваться, работай весовщиком!

Эф заметила, как мне досадно.

— В нашем деле лучше не торопиться, — сказала она, — это верный способ сэкономить время.

Ничего не поделаешь, пошли в весовую. Кстати, я давно не взвешивался. А в этой Аль-Джебре похудеешь!

Сева.

Весовая

(Таня — Нулику)

Что ни говори, Нулик, Аль-Джебра — удивительное государство! Вчера были в современном кафе, сегодня на сверхскоростном строительстве, и вот, не успели опомниться, как попали в гости к древнему восточному кудеснику.

Как ты себе представляешь весовую? Большой амбар, тяжелые неуклюжие весы. У весов — дюжий весовщик в брезентовом фартуке и рукавицах. А вокруг — мешки, ящики, корзины…

Так вот, ничего подобного не было. Нас ввели в полутемный сводчатый зал с тонкими витыми колоннами, такой высоченный, что потолка не видно. Будто над тобой ночное небо, только без луны и звезд. Вместо них в полумраке светятся какие-то закорючки и загогулины. Должно быть, восточные письмена. Посреди зала — большие старинные весы: тяжелые медные чашки, подвешенные на цепях к концам металлического коромысла. Весы тоже сплошь в закорючках и загогулинах. Они парят в воздухе, как большая диковинная птица. А между чашками, словно глазок радиоприемника, сверкает зеленый кошачий глаз.

— Садитесь, — шепнула Эф.

Мы оглянулись: ни стульев, ни кресел. Только несколько пестрых ковриков на полу. Эф уселась на одном из них, скрестив ноги. Мы сделали то же самое.

Бам! Что-то зазвенело — будто стукнулись два медных подноса, — и из темноты вынырнула фигура в длинном черном балахоне с желтыми разводами. На голове — белая шелковая башня. Называется «тюрбан». И борода у него тоже белая и шелковистая.

— Главный Весовщик, — шепнула Эф. — Следите за ним внимательно.

Весовщик приложил руку к сердцу и поклонился. Мы тоже приложили руки к сердцу и поклонились. Потом он взмахнул палочкой, и на каждой чашке весов появилось по Семерке. — обе в светящихся костюмах. Я так на них загляделась — даже не заметила, что в кошачьем глазке засветились две черточки. Эф легонько толкнула меня локтем:

— Это знак равенства. Семь равно семи, — негромко сказала она.

— Уж конечно, не восьми, — фыркнул Сева.

Но тут Весовщик снова взмахнул палочкой, и на правой чашке весов вместо Семерки оказалась Восьмерка. Чашка сразу опустилась. Мы взглянули на зеленый глазок: черточки знака равенства соединились слева и образовали уголок: 7 « 8.

— А вот знак неравенства. Он обозначает, что семь меньше восьми, — пояснила Эф.

Тут Восьмерка и Семерка поменялись местами. Теперь уже опустилась левая чашка. Черточки в кошачьем глазке снова задвигались и соединились правыми концами: 8 » 7.

— Понятно, — сказал Олег, — этот знак показывает, что восемь больше семи. Выходит, там, где палочки сходятся, стоит меньшее число, а там, где они расходятся, — большее.

— Детские игрушки, — проворчал Сева.

Весовщик не обратил внимания на его дерзость. Он взмахнул палочкой, и вот уже вместо чисел на весах засветились буквы: слева а + b, справа с. Между ними загорелся знак равенства: а + b = с.

Но в Севу точно бес вселился! Все ему не нравилось.

— Почему это, — придрался он, — Весовщик думает, что а + b равно с?

— А он вовсе и не думает — он требует этого, — ответила Эф. — Наверное, ему для какой-то задачи понадобилось, чтобы левая часть непременно была равна правой.

— А может быть, он все-таки ошибается? — заупрямился Сева. — Ведь под буквой можно подразумевать любое число! Вот я сейчас попрошу заменить все три буквы числами.

Он встал и подошел к Весовщику. Признаться, я очень испугалась: вдруг Весовщик рассердится и превратит Севу в какое-нибудь неравенство? Но он вовсе не рассердился. Наоборот, прижал руку к сердцу, и вот уже на левой чашке весов вместо буквы а стоит число Четыре, вместо b — Пять, а на другой чашке вместо с — Девятка: 4 + 5 = 9.

Но Сева не унимался.

— Нет, так не пойдет, уважаемый Главный Весовщик! Вы просто поставили те числа, которые вам выгодно. Позвольте, я сам!

Он назвал другие числа. Весовщик улыбнулся и снова пустил в ход свою палочку. Коромысло закачалось, в глазке зажегся знак неравенства. И мы увидели вот что: 6 + 7 « 20.

— Что я говорил! — закричал Сева. — Выходит, а плюс b не равно с.

И тут молчаливый Весовщик не выдержал.

— О неразумный отрок! — заговорил он тонким скрипучим голосом. — Если ты хочешь стать мудрецом, не болтай языком, не подумав. Под буквами действительно можно подразумевать произвольные числа. Но только до тех пор, пока они не связаны знаком равенства. В равенстве а + b = с можно произвольно заменить числами не три, а только две буквы. Величина третьей выяснится сама собой. Замени две из этих букв числами.

Сева подумал, пошевелил губами…

— Пусть а будет равно пяти, а с — двенадцати. На весах появилось выражение: 5 + b = 12.

— Скажи теперь, — улыбнулся Весовщик, — можно ли вместо b подставить любое число?

Но Сева не успел и рот открыть, как на весах вместо буквы b засветилась Семерка: 5 + 7 = 12.

Сева почесал за ухом.

— Да! С этими равенствами не разгуляешься. Зато уж в неравенстве подставляй что душе угодно — так неравенством и останется.

Весовщик укоризненно покачал головой:

— Опять говоришь не подумав. Неравенство неравенству рознь.

Назад Дальше