— Смотрите, — сказала она, — на моем треугольнике какая-то надпись.
Тогда и мы посмотрели и увидели, что на вафлях написано: «Треугольник Паскаля».
— Что-то вроде штампа фабрики, — сообразил Сева. — Как у нас «Красный Октябрь» или «Фабрика имени Бабаева».
— А это тоже фабрика Бабаева?
Таня перевернула треугольник другой стороной. Там были выпуклые числа. Мы сличили свои вафли; числа на всех были одинаковые.
Сначала нам показалось, что они расположены беспорядочно. Только слева и справа в каждом ряду обязательно стоит единица. Приглядевшись, мы увидели, что числа определенным образом чередуются. Вот, например, в пятом ряду: 1, 4, 6, 4, 1. В седьмом: 1, 6, 15, 20, 15, 6, 1. Мы заметили также, что если спускаться по левой стороне треугольника, в первом наклонном столбце написаны единицы, во втором — натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9… Дальше числа стоят вразброд: 1, 3, 6, 10, 15, 21… А потом и того хуже: 1, 4, 10, 20, 35, 56…
— Одним словом, абракадабра! — проворчал Сева.
— Напрасно думаете, — заметила наша соседка, латинская буква Эс. — В этих числах есть определенный порядок, и разобраться в нем вовсе не трудно.
— Ну, где тут порядок? Где? — горячился Сева.
— Немножко наблюдательности — и вы перестанете спорить. Заметьте, что любое число в этом треугольнике равно сумме двух чисел, стоящих над ним.
— Правда! — сказала Таня. — Число 28 из девятого ряда равно сумме семи и двадцати одного, которые стоят над ним.
— А 126 из десятого ряда равно сумме семидесяти и пятидесяти шести, — сосчитал Сева.
— Вот видите! Никогда не торопитесь с выводами, — сказала Эс. — Часто то, что кажется неразберихой, на самом деле имеет строгий порядок. Надо только его обнаружить.
В том-то и задача каждого ученого.
— До чего интересный треугольник придумал Паскаль! — вздохнула Таня.
— О, в этом треугольнике еще много замечательного. Сложите числа каждого ряда. В первом ряду так и будет единица. Во втором?
— Два.
— В третьем?
— Четыре. В четвертом — восемь, в пятом — шестнадцать, затем — тридцать два, шестьдесят четыре…
— Слушайте! — закричал я. — Ведь это же разные степени числа два:
20 = 1;
21 = 2;
22 = 4;
23 = 8;
24 = 16;
25 = 32.
Мне показалось, что Эс посмотрела на меня одобрительно.
— Не кажется ли вам, — сказала она, — что все эти степени можно записать одним алгебраическим выражением: 2n — 1 — два в степени эн минус единица?
— Почему же не просто два в степени эн?
— Оттого, что эн обозначает порядковый номер строки, а показатель степени здесь всегда на единицу меньше порядкового номера. В первой строке — нуль, во второй — единица, в третьей — два, и так далее.
— Ага! — догадалась Таня. — Выходит, сумма чисел, стоящих в десятой строке, будет равна двум в девятой степени, что можно изобразить так: два в степени десять минус единица: 210—1.
— Или два в степени эн минус единица, — победоносно закончил Сева.
— Очень приятно, что вы это поняли, — обрадовалась Эс. Но Сева сейчас же доказал, что радоваться рано.
— Жаль, что такое удивительное изобретение используется только для приготовления вафель, — заявил он.
Эс даже поперхнулась.
— Что вы такое говорите! Треугольник Паскаля широко применяется в Аль-Джебре. Он блестяще используется при возведении в степень двучленов. Кстати, этим вопросом занимался не только Паскаль, но и его великий современник, сэр Исаак Ньютон. С его формулой, известной под названием бинома Ньютона, вы познакомитесь несколько позже. Каждому овощу свое время…
— А! Ньютон! — небрежно отмахнулся Сева. — Это тот самый, который подошел к нам вместе с Лейбницем на Дороге Светлого Разума. Они там вдвоем что-то такое открыли, а потом разбирались, кто из них первый…
— Это «что-то такое» положило начало высшей математике. И называется оно анализом бесконечно малых и бесконечно больших величин.
И Эс, сухо попрощавшись, удалилась.
Сева так смутился, что нам его жалко стало.
Но не прошло и пяти минут, как он уже составлял какие-то новые треугольники, которые решил, конечно, назвать своим именем.
Вот один из них. Покажи его своим ученикам. Может быть, вы наведете в нем порядок.
Будь здоров. Олег.
Да! Совсем забыл ответить на твой вопрос. Ты хочешь знать, почему
Первая весточка от Черной Маски! Вот она, тайна, где-то рядом. Как в игре «горячо — холодно». Я чуть не закричал: «Горячо, горячо!»
— Может быть, это ключ к шифру! — сказал Олег.
Он осторожно расслоил вафлю. Вместо одной толстой получились две тоненькие. Мы положили их рядом и стали сличать буквы. Олег вынул карандаш и бумагу и написал два ряда букв:
я от вас ушел маска
а пу гвт фыим ндчоб
Вот когда мы расшифруем записку!
Но Олег снова задумался:
— Нет, тут что-то не так. В первом ряду буква «а» повторяется три раза. Но каждый раз она зашифрована по-разному. Сначала «а» — это «в», потом — «д», потом — «б». Значит, шифр все время меняется. Но как?
То-то и оно!
Мы опять приуныли.
Я с досадой взглянул на стручок. Разлегся как лодырь на круглой бумажной салфетке, а до нас ему и дела нет.
Только сейчас я заметил, что на салфетке, точь-в-точь как на круглой табличке в витрине, написаны буквы русского алфавита. Под каждой буквой номер. Мы стали рассматривать салфетку.
И вдруг стручок начал медленно вращаться. Совсем как часовая стрелка. Острый кончик его медленно скользил от буквы к букве.
— Смотрите! — сказал я. — После «я» на салфетке написано «а». И в шифре вместо «а» надо читать «я». После «о» стоит «п». И в шифре «п» означает «о». Значит, буквы надо заменять соседними.
— Ничего подобного! — заспорила Таня. — В слове «вас» буква «а» заменена буквой «в». А ведь буква «в» не соседняя, а вторая после «а». А в слове «ушел» буква «ш» заменена «ы». А это уже третья буква после «ш».
Ну и задача! Абракадабра!
Мы растерянно смотрели на вафли. Но что это! Хочешь верь, хочешь не верь: буквы на шифрованном треугольнике исчезли. Вместо них появились числа.
Треугольник Паскаля! Вот так штука!
Олег внимательно переводил глаза с бумажки на салфетку, с салфетки на вафлю.
— Смотрите-ка, в слове «вас» буква «а» заменяется буквой «в». Это как раз вторая буква после «а». Теперь поглядим на треугольник Паскаля. Там на этом месте тоже двойка. То же самое и в слове «ушел». Буква «ш» заменяется «ы», которая занимает третье место после «ш». И в треугольнике Паскаля там тоже стоит тройка.
Вот тебе и ключ к шифру! Только подойдет ли он к нашей записке?
Олег вынул ее из потайного кармана, и мы стали расшифровывать. Сначала, правда, запнулись. Понимаешь, слова записки не были заключены в треугольник. А нам надо было знать, по какой строчке треугольника расшифровывать каждое слово. Но Олег быстро догадался, как это делается: если в слове пять букв — расшифровывай по пятой строке треугольника, если восемь — по восьмой, и так далее.
Первое слово записки — «трэялрп». В нем семь букв. Но в нашем треугольнике было всего пять строк. Пришлось попросить большой треугольник. Для научных целей. Директор выбрал самый что ни на есть огромный.
Посмотрели на седьмую строчку. Там были такие числа: 1, 6, 15, 20, 15, 6, 1. Подписали под ними первое слово:
1 6 15 20 15 6 1
т р э я л р п.
Теперь надо было отодвинуться по кругу от «т» на одну букву, от «р» — на шесть, от «э» — на пятнадцать… Стали отсчитывать буквы по ходу часовой стрелки. Но вот беда: стручку это почему-то не понравилось. Он упорно двигался в обратном направлении.
Тогда мы смекнули, что по часовой стрелке надо отсчитывать буквы, когда зашифровываешь. А мы-то расшифровываем! Значит, и отсчитывать следует против часовой стрелки. Отсчитали от «т» одну букву назад — получили «с», от «р» шесть букв — получили «к», от «э» пятнадцать букв — получили «о»…
И вот уже вместо дурацкого слова «трэялрп» перед нами хорошее русское слово «сколько». Точно так же расшифровали и следующее слово «вюоп». В нем четыре буквы. Посмотрели на четвертую строчку треугольника: 1, 3, 3, 1. Оказалось, что это никакое не «вюоп», а просто «было».
Так, слово за слово, распутали мы всю абракадабру. Вот что оказалось в записке:
«Сколько было у меня горошин, если Нулик сперва съел одну треть их, затем прихватил не то две, не то четыре горошины, половину остатка я потерял, а Нулик вернул мне половину того, что он прихватил; потом две горошины я подарил, а последнюю унес ветер? Стручок».
Час от часу не легче! Разгадал одну загадку — теперь разгадывай другую.
Вот какие дела, старик!
Сева.
Старый знакомый
— Если вы в самом деле хотите помочь одному незнакомцу, — сказал он таинственно, — решите эту задачу сами. Но для этого необходимо составить уравнение…
Легко сказать, составить уравнение! Составить треугольник Паскаля — это еще куда ни шло, но уравнение?…
— Понимаю, — посочувствовал Пэ, — вы еще не были на нашем образцовом строительстве. Иначе вы уже знали бы, с чем это едят.
— Строительство и уравнение? — покачал головой Сева.
— Ничего удивительного! Неужели вы думаете, что можно построить что-нибудь без уравнений?
Мы хотели сейчас же, сию минуту отправиться на это необыкновенное строительство, но директор напомнил, что сегодня праздник. Придется подождать до завтра.
— Кстати, — добавил он, — сейчас в нашем кафе начнется выступление знаменитого фокусника. Хотите посмотреть?
Не стоило и спрашивать. Кто же откажется от такого удовольствия? И можешь себе представить, на эстраде появился тот самый фокусник, который выступал в карликанском цирке! Мы обрадовались ему, как родному. Сейчас он станет делить нуль на тысячу частей, покажет Великана из Бесконечности… Но все было иначе.
Фокусник поднял руку, и в ней неизвестно откуда появилась длинная палка. Потом он выпустил палку, но она не упала, а продолжала лежать в воздухе, как на столе. Фокусник предложил публике убедиться, что палка не какая-нибудь фальшивая, а выточенная из цельного куска дерева.
Первым на эстраду выскочил Сева, за ним — еще несколько посетителей. Все они подтвердили, что никакого обмана нет.
Тогда фокусник взмахнул рукой, и вот уже на палке, как воробьи на проводах, уселись его ассистенты-числа.
— Обратите внимание, — сказал фокусник, — числа расположены на палке в определенном порядке. Каждое, начиная слева, больше предыдущего на одно и то же число.
— На два! — крикнули из зала.
— Правильно, на два.
Фокусник снова взмахнул рукой, и на палке появились другие числа:
— Попрошу уважаемую публику ответить: какой порядок в этом ряду чисел?
— Каждое число больше предыдущего на пять, — сказала я.
— Благодарю вас, — поклонился фокусник. — Так вот, должен вам сделать потрясающее сообщение: ряд чисел, где каждое последующее число больше предыдущего на постоянную величину, называется ар-р-р-ифметической пр-р-р-ро-грессией. Но это еще не все. Эта постоянная величина называется разностью прогрессии. И более того: сами числа называются членами прогрессии!
— Ага! Значит, в первом случае разность прогрессии была равна двум, а во втором — пяти, — сказал кто-то.
— Браво! — воскликнул фокусник.
Сева толкнул меня локтем:
— Все это хорошо, но когда начнутся фокусы?
Фокусник, наверное, услышал его слова. Он лукаво посмотрел на Севу и снова взмахнул рукой. И вдруг палка, толстая палка, выточенная из цельного куска дерева, согнулась посредине и концы ее сошлись. Теперь числа, сидевшие, на равном расстоянии от концов, оказались точно друг против друга: три — против сорока восьми, восемь — против сорока трех, и так далее.
— Попрошу сложить любую пару чисел, — предложил фокусник.
Мы сложили: три и сорок восемь. Получилось пятьдесят один. Затем восемь и сорок три. Снова пятьдесят один. Тринадцать плюс тридцать восемь… Что такое? Опять пятьдесят один! И восемнадцать плюс тридцать три, и двадцать три плюс двадцать восемь — все они в сумме давали одно и то же число: пятьдесят один.
— Вот это уже фокус! — закричал Сева.
— Где фокус? — развел руками фокусник. — Это вы называете фокусом? Ха-ха-ха! Обыкновеннейшее алгебраическое правило.
— Но в чем же тогда фокус? — хорохорился Сева.
Фокусник небрежно разогнул палку, словно она была из бумаги.
— Попробуйте положить палку в воздухе, согнуть ее пополам, потом снова разогнуть и вы не станете задавать мне такие вопросы!
Все засмеялись, захлопали, а фокусник продолжал: — Предлагаю сделать небольшой опыт. Кто из вас быстрее сложит все числа этой арифметической прогрессии? Раз, два, три — начали!
В зале зашептались, зашуршала бумага, задвигались карандаши. Мы тоже стали складывать:
3 + 8 + 13 + 18 + 23 + 28 + 33 + 38 + 43 + 48.
Сначала складывали в уме, потом — столбиком. От волнения все время сбивались. Нам очень хотелось сосчитать быстрее. Но почему-то получалось медленно. Под конец чуть не подрались.
Но тут фокусник поднял руку:
— Стоп! Никуда не годится, слишком долго считаете. Можно гораздо быстрее. — И он снова согнул палку пополам. — Попрошу убедиться! Перед вами пять пар чисел. Сумма каждой — пятьдесят один, а сумма пяти пар в пять раз больше. Беру пятьдесят один, умножаю на пять. И что я получаю? Я получаю двести пятьдесят пять! А теперь попробуйте сами. Желающие, проходите, проходите, не стесняйтесь!