Путешествие к далеким мирам - Гильзин Карл Александрович 12 стр.


Так человек впервые заимствовал небольшую толику из того колоссального склада энергии, каким являются верхние слои атмосферы. Высказываются разные предположения о возможностях практического использования этого эффекта, начиная от увеличения надежности радиосвязи за счет отражения радиолучей от создаваемых таким образом ионизированных облаков и кончая освещением больших территорий ночью.

Но, конечно, едва ли не прежде всего может оказаться заинтересованной в использовании нового источника энергии реактивная техника. Ведь если удастся осуществлять процесс рекомбинации атомарных атмосферных газов внутри реактивных двигателей так же, как это предполагается делать с атомарным водородом и другими атомарными топливами, о чем говорилось в главе 8, то перед авиацией и реактивной техникой откроются совершенно фантастические возможности. Достаточно будет забраться на нужную высоту, чтобы совершать затем сколь угодно длительный полет на этой высоте, не расходуя ни капли топлива — ведь океан солнечной энергии, накопленной в верхних слоях атмосферы, неисчерпаем!

Понятно, какое значение это могло бы иметь и для астронавтики. На высотах порядка 100 километров корабль может лететь практически с любой скоростью, не опасаясь нагрева, крайне опасного на меньшей высоте. Поэтому достаточно было бы поднять корабль при старте на необходимую высоту, и далее весь необходимый разгон мог бы осуществляться за счет «даровой» энергии атмосферы! Точно так же можно было бы осуществлять и торможение при посадке. Конечно, пока еще это только смелое предположение, не более.[31] Но кто знает, может быть, именно так и будут взлетать и садиться космические корабли будущего?

Судя по сказанному, мы еще далеко не все знаем о земной атмосфере, но, во всяком случае, уже достаточно много, для того чтобы уверенно направить межпланетный корабль через атмосферу к далекой цели и наилучшим образом использовать свойства атмосферы для межпланетных сообщений.

Глава 10

В ПРЕДДВЕРИИ МИРОВОГО ПРОСТРАНСТВА

Мечтая о завоевании людьми мирового пространства и разрабатывая планы этого завоевания, Циолковский намечал постепенные этапы решения этой небывалой задачи. Он понимал, что только шаг за шагом — по мере совершенствования реактивной техники, увеличения наших знаний о мировом пространстве, расширения научной и экспериментальной базы астронавтики — может вестись штурм мирового пространства. Сначала всё более высотные полеты в атмосфере, затем прыжки за атмосферу, в преддверие мирового пространства; все более глубокая разведка этого пространства, полеты вокруг Луны, посадка на Луну; потом полеты вокруг планет, посадка на них, постепенное освоение мирового пространства — вот очевидные вехи на пути к осуществлению заветной мечты человечества.

Прошло полвека с того времени, как Циолковский начал набрасывать схему сражения за мировое пространство. Эти десятилетия не пропали даром. Сам Циолковский был свидетелем только первых, робких шагов по намеченному им пути: первых теоретических работ по астронавтике, первых попыток изобретателей-энтузиастов создать жидкостные ракетные двигатели, первых запусков таких ракет. После смерти Циолковского, и в особенности за последнее десятилетие, началось бурное развитие реактивной техники, являющейся технической основой астронавтики. Это позволило достичь серьезных успехов в борьбе за скорость полета, позволило начать тот штурм мирового пространства, о котором мечтал Циолковский.

Каких же успехов в этом штурме уже удалось добиться с помощью реактивной техники?

Современные реактивные самолеты свободно летают в стратосфере со сверхзвуковыми скоростями.

14 июля 1959 года советский летчик В. Ильюшин на самолете Т-431 с двумя турбореактивными двигателями установил новый мировой рекорд высоты полета — 28 852 метра. 31 октября 1959 года другой советский летчик — Г. Мосолов на самолете Е-66 с одним турбореактивным двигателем установил новый мировой рекорд скорости полета: он пролетел базу, то есть мерный участок пути в 15–25 километров, на высоте 13 500 метров со средней скоростью 2388 километров в час, а в одном из заходов достиг скорости 2504 километра в час!

Еще большие высоты и скорости полета достигнуты с помощью экспериментальных ракетных самолетов с жидкостными ракетными двигателями. Так как запаса топлива на подобных самолетах хватает только на несколько минут полета (жидкостные ракетные двигатели расходуют очень много топлива), то часто эти самолеты поднимают на большую высоту с помощью тяжелых самолетов-носителей. Легкий и небольшой ракетный самолет обычно подвешивается под таким носителем и освобождается от него, переходя на самостоятельный полет, лишь на большой высоте. Благодаря этому экономится топливо, которое в ином случае пришлось бы израсходовать на взлет и набор высоты (не правда ли, это похоже на составную ракету).

В подобных полетах удавалось достигать таких высот и скоростей полета, которые, вероятно, являются рекордными для полета человека. Так, по данным печати, в США была достигнута скорость полета порядка 3500 километров в час и высота примерно 38 километров. Летчик в этих случаях находился в условиях, очень напоминающих полет в мировом пространстве. Конечно, кабина такого самолета, как и других высотных самолетов, в том числе и пассажирских, сделана герметичной. Это значит, что она полностью изолирована от окружающей атмосферы, в ней поддерживается давление, близкое к давлению атмосферы на уровне моря, обеспечивается нужная температура и влажность воздуха, снабжение кислородом и удаление продуктов дыхания, то есть так называемое кондиционирование воздуха. Значит, и в этом отношении летчик подобного самолета находился в условиях, очень похожих на условия полета в межпланетном корабле.

Однако достижения реактивной авиации вовсе не исчерпывают успехов, достигнутых современной техникой в штурме мирового пространства. Реактивная техника позволила осуществить полет, правда пока еще без человека, на таких скоростях и высотах, которые оставляют далеко позади рекорды ракетных самолетов. Этот полет осуществлен с помощью тяжелых, управляемых в полете ракет. Именно такие ракеты ведут в настоящее время успешный штурм мирового пространства, намеченный Циолковским.

Уже ракеты, применявшиеся во время минувшей войны в качестве сверхдальнобойных снарядов, достигали высот до 100 километров и скорости полета до 5500 километров в час. После окончания войны подобные же ракеты стали применяться для высотных полетов с различными исследовательскими целями, чаще всего геофизическими и метеорологическими, то есть интересующими науку об атмосфере и службу погоды.

Неудивительно, что в таких полетах ракеты залетали на еще большие высоты. Ведь в этих случаях ракета летит только вверх, да и взрывчатку не приходится с собой возить. Кроме того, время шло — и ракеты, как и их двигатели, становились более совершенными. Эти стратосферные исследовательские ракеты достигали высот 150, 200 и даже 250 километров, то есть забирались далеко в ионосферу. А в рекордном полете мощной советской геофизической ракеты, осуществленном 21 февраля 1958 года, была достигнута высота 473 километра! Вес только одной научной аппаратуры на этой ракете составлял 1520 килограммов.

С помощью приборов, установленных на ракетах, удалось получить много новых научных сведений самого различного характера, в том числе и данные исключительной ценности. Ведь это пока единственный способ, с помощью которого ученый может поднять свои приборы на огромную высоту, вынести их, по существу, за пределы атмосферы, в непосредственное соседство с мировым пространством, а затем получить эти приборы обратно.

Представляют интерес фотоснимки Земли, сделанные с большой высоты (более 200 километров) с помощью фотоаппаратов, установленных на ракетах. Конечно, на этих снимках Земля наша не похожа на ту Землю, которую мы видим не только из окна железнодорожного вагона, но даже из окна высоко летящего самолета. Никаких деталей земной поверхности на снимках разглядеть нельзя, зато на них много другого, очень интересного. Ведь фотоаппарату удается зафиксировать территорию протяженностью до 5 тысяч километров, а это открывает совершенно новые возможности в отношении картографирования, изучения движения облаков и проч. Кстати сказать, на таких снимках уже совершенно отчетливо заметна шарообразная форма Земли. Рекордные достижения современной реактивной техники в отношении высоты и скорости полета удалось получить путем использования идеи Циолковского о составных ракетах, или «ракетных поездах». Для рекордных полетов вначале была использована двухступенчатая ракета. Первая, задняя, ступень представляла собой примерно такую же тяжелую ракету, которая была описана выше, в главе 6. Передняя ракета (меньшая) была установлена на задней вместо ее боевой головки и весила примерно полтонны. Когда двигатель задней ракеты останавливался из-за выработки всего топлива, запасенного на этой ракете, она отделялась от передней. В то же мгновение автоматически запускался двигатель передней ракеты, и она продолжала свой вертикальный взлет. Понятно, что передняя ракета залетала выше и приобретала большую скорость, чем одна большая задняя ракета. Таким способом еще в 1949 году была достигнута высота примерно 400 километров[32] и скорость полета около 8300 километров в час, то есть приблизительно 2,3 километра в секунду.

Однако эти рекордные достижения двухступенчатых ракет намного превзойдены даже новейшими одноступенчатыми ракетами, как это указывалось выше, и в особенности, конечно, многоступенчатыми ракетами. Так, с помощью многоступенчатых ракет неоднократно достигались высоты, превосходящие 1000 километров, и скорости более 5 километров в секунду. Еще значительнее результаты, достигнутые при запуске с помощью многоступенчатых ракет первых искусственных спутников Земли. При этом скорость ракет превысила 8 километров в секунду и высота достигла примерно 1900 километров, а при запуске одного из миниатюрных американских спутников — даже около 4000 километров. При неудачных запусках ракет на Луну, произведенных в США в конце 1958 года, ракеты залетали на расстояние примерно 120 000 километров от Земли. Но, конечно, рекордным во всех отношениях является замечательный полет советской многоступенчатой космической ракеты, запущенной 2 января 1959 года. Ведь скорость этой ракеты превысила скорость отрыва, то есть 11,2 километра в секунду, и ракета удалилась в глубины Космоса на расстояния в миллионы километров от Земли, на которую никогда более не возвратится.[33]

Достигнутые успехи в развитии тяжелых высотных ракет открывают совершенно новые возможности в области сверхскоростных дальних перелетов на Земле. Для этого нужно снабдить ракету крыльями.

Идея крылатой ракеты принадлежит Цандеру. Он предложил снабжать ракету крыльями, подъемная сила которых могла бы быть использована как при взлете, так и при посадке космического корабля.

Уже простое добавление крыльев к ракете, описанной в главе 6, может существенно увеличить дальность ее полета. Эта ракета залетала на расстояние около 300 километров, причем ее полет длился примерно 5 минут. Такая же, но крылатая ракета совершала бы втрое более продолжительный полет, до 15 минут, и залетала бы почти вдвое дальше, на расстояние 550–560 километров. Вот какую роль играет подъемная сила крыла!

Если же сочетать идею Цандера о крылатой ракете с предложенной Циолковским идеей ракетного поезда, то это может дать замечательные результаты. Представим себе простейший ракетный поезд, состоящий из двух ракет: задней — обычной, бескрылой, и передней — крылатой. Если передняя ступень — это все та же, уже известная нам дальняя ракета, но только с крыльями, то задняя, бескрылая, ракета должна быть гораздо больше по размерам и ее двигатель должен обладать, естественно, большей тягой. По одному из подобных проектов тяга задней ракеты должна составлять примерно 180 тонн, общий вес поезда при взлете — почти 100 тонн (из них около ? — топливо), длина поезда — более 30 метров.

В зависимости от назначения будет изменяться и характер полета такого поезда. Сначала задняя ракета уносит весь поезд на высоту примерно 25 километров, на которой двигатель этой ракеты останавливается из-за выработки всего топлива, и она автоматически отделяется, опускаясь с помощью парашюта на землю. Теперь вторая ракета может лететь на этой постоянной высоте в горизонтальном полете со скоростью 2600 километров в час, пока и ее двигатель не выработает всего топлива. В этом случае общая продолжительность полета составит примерно 70 минут, в течение которых ракета покроет расстояние около 2500 километров. Значит, за час с небольшим — из Москвы в Караганду!

Оказывается, можно значительно увеличить дальность этого полета и вместе с тем сократить его продолжительность. Гораздо дальше, но… гораздо быстрее! Звучит парадоксально, однако это строгий научный расчет, основанный на использовании замечательных свойств несущего крыла и особенностей земной атмосферы. Если после отделения задней ракеты передняя продолжает вертикальный взлет, то она в состоянии достичь высоты около 300 километров, а затем совершить пологий планирующий полет с использованием подъемной силы крыла. Общая дальность такого полета составит около 5000 километров, при продолжительности всего в 45 минут. За ? часа из Москвы до Якутска! Скорость полета при этом будет большей, чем когда-либо достигнутая человеком, — до 12 тысяч километров в час (3? километра в секунду).

Исследования показали, что сочетание огромной скорости полета с подъемной силой крыла позволяет осуществить и гораздо более эффективный полет. Современный уровень развития реактивной техники дает принципиальные возможности создания сверхдальнего ракетного самолета, способного совершить беспосадочный кругосветный перелет за очень короткое время.[34]

Создание сверхдальнего ракетного самолета возможно только благодаря тому, что жидкостный ракетный двигатель в состоянии обеспечить огромную высоту и скорость полета. Ведь такой двигатель работает считанные минуты, в течение которых он расходует все топливо, запасенное на самолете. Конечно, за эти несколько минут полета с работающим двигателем самолет не в состоянии совершить дальний полет. Однако мощный жидкостный ракетный двигатель заносит самолет на большую высоту и сообщает ему огромную скорость. Планирующий полет самолета с остановленным двигателем, совершенный с этой высоты, может быть очень продолжительным и дальним.

Кругосветный полет самолета с жидкостным ракетным двигателем можно представить себе следующим образом. Мощный двигатель за несколько минут своей работы забрасывает самолет на высоту 300–400 километров и сообщает ему скорость не менее 4 километров в секунду, то есть примерно 14 тысяч километров в час. Для этого, правда, двигатель должен работать на новых, более совершенных топливах, обеспечивающих большую скорость истечения газов, чем в настоящее время.

Назад Дальше