Опыты без взрывов - Ольгин Ольгерд Маркович 14 стр.


Если придется хранить этот раствор, то перелейте его в бутылку или склянку с хорошо подогнанной пробкой. В открытой посуде раствор хранить нельзя! Второй раствор: на литр раствора - 100 г сахара-рафинада и 10 мл разбавленной (примерно 10%-ной) серной или азотной кислоты. Сахар заранее растворите в дистиллированной воде, добавьте кислоту, покипятите четверть часа и долейте воду до расчетного объема.

Смешайте оба раствора: на один миллилитр второго раствора (с сахаром) возьмите примерно 100 мл первого раствора (с нитратом серебра). Точное соотношение придется подобрать на опыте. Если будет избыток сахарного раствора, то при серебрении начнут выпадать хлопья; если же, напротив, этот раствор в недостатке, то серебрение пойдет слишком медленно. Полученную смесь быстро и тщательно размешайте; сначала она станет оранжево-красной, а затем почернеет. Это сигнал: пора приступать к серебрению. Не упустите момент!

Сразу вылейте смесь на стекло. Она растечется по всей поверхности, и стекло станет темным, но потом быстро начнет светлеть, на нем образуется слой металлического серебра, которое восстанавливается из нитрата. Через 5-10 мин осторожно сгоните смесь со стекла с помощью марли (а еще лучше -ї кусочка замши), смоченной в дистиллированной воде, вновь налейте смесь и подержите ее еще четверть часа. Уже посеребренную поверхность промойте дистиллированной водой. Если на стекле окажутся темные пятна, их надо протереть тампоном со смесью пемзы, затем раствором хлорида олова (IV), снова налить на эти места смесь и промыть водой.

Чтобы проверить, достаточно ли осадилось серебра на стекле, посмотрите сквозь зеркало на лампу мощностью 60 Вт - она должна быть едва видна сквозь посеребренное стекло.

Серебряный слой еще недостаточно прочно держится на стекле. Чтобы укрепить его, поставьте зеркало в вертикальном положении на час-другой нагреваться при температуре 100-150+С. Воспользуйтесь сушильным шкафом, в крайнем случае несильно нагретой духовкой. Когда зеркало остынет, покройте серебряную пленку водостойким прозрачным лаком из пульверизатора (кисть может ее повредить). После высыхания нанесите поверх лака толстый слой непрозрачной краски или черного битумного лака. Водите кистью или направляйте струю из пульверизатора только в одном направлении: либо сверху вниз, либо слева направо.

Зеркало почти готово. Осталось лишь привести в порядок его лицевую, непосеребренную сторону. На ней могут оказаться затеки серебра; удалите их тампоном, смоченным слабым раствором соляной кислоты. Если вы запачкали руки, то удалите пятна слегка подогретым раствором гипосульфита и хорошенько вымойте руки теплой водой.

Много ли серебра пошло на изготовление зеркала? И сколько серебра в настоящем зеркале? Вопросы вроде бы нехитрые, но ответить на них не так-то легко. Пленка серебра настолько тонка, что даже будь у вас микрометр, ее не измерить...

Чтобы не портить хорошее зеркало, возьмите какой-нибудь осколок, удалите слой лака и краски ватой, смоченной ацетоном, и положите на посеребренную поверхность небольшой кристаллик йода. Уже при комнатной температуре йод довольно быстро испаряется, его пары растекаются по стеклу, потому что они намного тяжелее воздуха. Чтобы их не разогнал случайный сквозняк, накройте кристаллик перевернутым стаканом.

При взаимодействии йода с серебром образуется иодид серебра, и возле кристаллика медленно расплывается прозрачное пятно: иодид в тонком слое прозрачен. А у краев прозрачного пятна серебряная пленка не исчезает, но становится тоньше. И в результате на зеркале появляются окрашенные кольца, которые видно особенно хорошо в отраженном свете.

Кольца кажутся цветными по той же причине, по которой нам кажутся радужными мыльные пузыри и масляные пятна на воде. Явление это называется интерференцией света в тонких пленках, его изучают в курсе физики. Для нас самое важное вот что: чем больше колец, тем толще серебряная пленка. Если их два, то толщина пленки около 0,03 мкм, три кольца соответствуют 0,06 мкм, четыре - 0,09, пять - 0,12, шесть - 0,15, семь - 0,21 мкм.

Зная толщину серебряного слоя, легко подсчитать и количество серебра: надо лишь умножить толщину на площадь зеркала и полученный объем еще раз умножить на плотность серебра (10,5 г/см3).

Вот ориентир для проверки расчета: зеркало площадью около квадратного метра содержит чуть больше грамма серебра.

5. ЛОВКОСТЬ РУК

Нас окружает множество вещей и веществ, которые кажутся обыденными и ничем не примечательными. Однако очень часто они обладают удивительными свойствами надо только суметь их заметить. Скажем, алюминиевой ложкой можно выпрямлять переменный ток, спичкой - зажечь электрическую лампочку, сахаром-рафинадом высечь искры, а марганцовкой из аптеки - начистить до блеска кастрюлю. Но для этого надо, во-первых, знать свойства веществ и, во-вторых, уметь этими свойствами пользоваться, иными словами, необходима ловкость рук, приобретаемая с опытом. И, как в старые времена говорили фокусники, - никакого мошенничества!

Итак, займемся фокусами - серьезными химическими фокусами. Иногда - для забавы, но чаще - для демонстрации необычных явлений и изготовления необычных вещей.

ЛОЖКА-ВЫПРЯМИТЕЛЬ

Для этого опыта годится любая алюминиевая ложка - чайная или столовая. Ее надо тщательно вымыть и обезжирить; как это сделать, вы знаете из опытов с анодированием алюминия. Ложка будет первой деталью будущего выпрямителя тока, а второй нам пока послужит пустая консервная банка, высотой примерно с ложку, во всяком случае, не намного ниже.

Жестяную банку вымойте с мылом или стиральным порошком, ополосните и заполните раствором для анодирования алюминия: на 100 мл воды - 20 мл серной кислоты (осторожно!). Кислоту можно заменить, карбонатом аммония (NН4)2СО3 (10 г) или в крайнем случае пищевой содой, растворив ее в воде до насыщения. Вода должна быть дистиллированная, годится и чистая дождевая.

Прежде чем опускать ложку в банку, прикиньте, до какого места ложки будет доходить раствор. На границе раствор - воздух алюминий будет интенсивно растворяться, и ложка скоро развалится на две части. Чтобы этого не произошло, участок вблизи границы покройте слоем лака или водостойкого клея.

Теперь подвесьте ложку в банке так, чтобы она не касалась стенок; устройство подвески вы, наверное, без труда придумаете сами. Под банку положите кафельную плитку или любую другую не проводящую электричество подставку. На этот раз мы будем пользоваться не батарейками или аккумулятором, а переменным током от сети, и, естественно, надо полностью себя обезопасить. По той же причине самым тщательным образом изолируйте все оголенные концы проводов, а во время опыта не прикасайтесь ни к ложке, ни к банке. Лучше всего, если перед включением тока вы накроете их перевернутым фанерным ящиком или пластмассовым ведерком.

Электрическая схема проста: включите в цепь последовательно лампу мощностью около 40-60 Вт, переключатель, ложку и банку; если есть амперметр, можно подсоединить и его. Когда схема собрана и надежность изоляции проверена, включайте ток.

Сначала, как вы и догадываетесь, лампа загорится, потому что раствор в банке электропроводен. Но примерно через полчаса она станет светить заметно слабее, а потом и вовсе погаснет. Ложка стала выпрямителем. Она пропускает ток только в одном направлении - от банки к ложке.

В этом было бы легко убедиться, будь у вас осциллограф: на его экране в начале опыта светилась бы синусоида, а в конце нижняя ее ветвь исчезла бы: в цепи течет так называемый импульсный ток. Осциллограф помог бы сразу установить, где положительный полюс выпрямителя, а где отрицательный (это очень важно, если вы собираетесь ставить с самодельным выпрямителем электрохимические опыты). Но можно обойтись и без приборов: полярность выпрямителя легко установить, пользуясь полоской фильтровальной бумаги, смоченной слабым раствором поваренной соли с добавкой индикатора фенолфталеина.

Отключите ток, прижмите листок к ложке и к банке и закрепите его, например, пластмассовыми бельевыми прищепками. Включите ток, и несколько минут спустя фильтровальная бумага покраснеет у одного из полюсов. Этот полюс отрицательный. При электролизе воды (соль нужна только затем, чтобы увеличить электропроводность) на отрицательном электроде (катоде) выделяется водород, а ионы ОН- остаются в избытке. Эти ионы и обусловливают щелочные свойства, поэтому индикаторная бумага краснеет.

Такое же испытание влажной индикаторной бумагой с солью и фенолфталеином можно провести и в том случае, если вы перепутали полюса аккумулятора или батарейки. Так как здесь напряжение невелико, полоску бумаги можно просто прижать руками к обоим полюсам источника тока.

Но отчего алюминиевая ложка стала выпрямителем? После включения тока на ней, как и при анодировании алюминия, растет пленка оксида алюминия. А эта пленка - полупроводник: пропускает ток только в одном направлении. Это ее свойство нередко используют в технике.

С помощью самодельного выпрямителя можно ставить некоторые электрохимические опыты, которые описаны в этой книге. Но в соответствии с условиями опыта включайте выпрямитель через понижающий трансформатор. Напряжение ни в коем случае не должно превышать 40 В. А ток, который можно снимать с алюминиевой ложки, может достигать нескольких десятков ампер.

Но обязательно ли брать для выпрямителя ложку и консервную банку? Разумеется, нет. Вместо ложки можно взять алюминиевый электрод любой формы, вместо банки - железный, свинцовый или графитовый электрод и погрузить их в стеклянный сосуд, в который налит раствор электролита. Более того, так мы и советуем вам поступить, если вы решите использовать самодельный выпрямитель на практике. Но если вы собираетесь продемонстрировать, как оксид алюминия выпрямляет переменный ток, то ложка с банкой выглядят гораздо эффектнее...

ЗАЖГИТЕ ЛАМПУ СПИЧКОЙ!

Для этого опыта удобнее взять настольную лампу. Один из ее проводов отсоедините от вилки и удлините, не забывая о хорошей изоляции.

Возьмите небольшую узкую стеклянную трубку с тонкими стенками (проще всего воспользоваться стеклянными рейсфедерами с оттянутыми концами). Вставьте в трубку с двух концов электроды - проводки диаметром около 1 мм; закрепите их в трубке изоляционной лентой. Электроды не должны соприкасаться, расстояние между ними 1-2 мм.

Удлиненный провод от лампы присоедините к одному из электродов, а другой электрод соедините проводом со свободным гнездом вилки и изолируйте. У вас получится цепь, разомкнутая в одном участке - между электродами. Закрепите стеклянную трубку в горизонтальном положении. Это совсем просто сделать, если провода жесткие, с пластмассовой изоляцией: зажмите провод, и трубка будет на нем держаться. Подготовка к опыту закончена, можно включать вилку в сеть. Лампа, конечно, гореть не будет.

Поднесите к трубке, в которую вставлены электроды, зажженную спичку. Если трубка из не тугоплавкого стекла, то стекло размягчится и трубка при этом чуть-чуть провиснет. И тут же загорится лампа, несмотря на то, что цепь по-прежнему остается разомкнутой. Дело в том, что соли, входящие в состав стекла, при нагревании ионизируются, и стекло становится проводником.

Если опыт не получается из-за того, что трубка широка, то вместо спички возьмите свечку или спиртовку. Зажечь лампу свечкой - тоже эффектный опыт.

А еще можно ее зажечь с помощью расплавленной селитры. Закрепите вертикально пробирку, на дно которой насыпано немного калиевой или натриевой селитры (нитрата калия или натрия), и опустите в нее две медные проволочки. Чтобы медные электроды не соприкасались, пропустите их сквозь пробку. Подсоедините к электродам лампу так же, как в предыдущем опыте. Когда вы включите ток, лампа, естественно, не загорится: твердая селитра ток не проводит.

Нагрейте селитру до плавления с помощью таблеток сухого горючего - лампа вспыхнет. Ионы, составлявшие кристаллическую решетку соли, приобретают подвижность, и цепь замыкается. Лампа будет гореть и после того, как вы уберете пламя: у расплава селитры высокое электрическое сопротивление, и то тепло, которое выделяется при прохождении тока, поддерживает селитру в расплавленном состоянии.

Подобным образом можно поставить опыт не с расплавом, а с раствором, например, поваренной соли. Электроды в этом случае лучше взять графитовые. Погрузите их сначала просто в банку с водой, а потом небольшими порциями добавляйте соль, и лампа будет разгораться все ярче.

Между прочим, таким способом удобно проверять электропроводность растворов. Проверьте, например, как проводят ток растворы соды, сахара и уксусной кислоты разной концентрации.

И еще один, не вполне обычный опыт с электрической лампочкой, но не с большой, а от карманного фонаря. Укрепите ее в полоске жести, согнутой под прямым углом, и вставьте полоску в небольшой химический стакан так, чтобы стеклянный баллон лампочки оказался внутри стакана и был обращен к его дну. Подключите лампочку к батарейке: выступ на цоколе, самый крайний его участок соедините с отрицательным полюсом, а полоску жести - с положительным. Обратите внимание: припаивать проводники нельзя, потому что во время опыта припой может расплавиться. Надо придумать механический контакт или же использовать патрон от старого карманного фонаря.

До начала опыта выньте лампу из стакана и насыпьте в него нитрат натрия (нитрат калия в этом случае не годится; почему - станет ясно позже). Поставьте стакан на асбестовую сетку или металлическую пластинку и нагрейте его на пламени газовой горелки или спиртовки; сухой спирт не очень удобен, так как трудно регулировать температуру расплава. Селитра плавится при 309+С, а при 390+С уже разлагается; вот в таком интервале и придется поддерживать температуру. Для этого изменяйте либо размер пламени, либо расстояние до стакана. Следите, чтобы расплав не застывал, даже с поверхности.

В расплавленную селитру осторожно опустите лампочку. Большая часть стеклянного баллона должна быть погружена в расплав, но следите за тем, чтобы верхняя часть цоколя, к которой припаян проводник, не соприкоснулась с селитрой - произойдет короткое замыкание. Зажженную лампочку подержите в селитре около часа, потом отключите ток, погасите горелку и аккуратно доставьте лампочку. Когда она остынет, промойте ее водой, и вы увидите, что лампочка изнутри покрыта зеркальным слоем!

Мы уже говорили, что при нагревании заряженные частицы в стекле приобретают подвижность (поэтому и зажглась лампа, когда трубку нагревали спичкой). Главные действующие лица - ионы натрия: уже при температуре выше 300+С они становятся достаточно подвижными. Само стекло остается при этом совершенно твердым.

Когда вы погрузили включенную лампочку в расплав селитры, то стекло, из которого сделан баллончик, оказалось в электрическом поле: спираль отрицательный полюс, расплав, который соприкасается с полоской жести, положительный. Подвижные ионы натрия начали двигаться в стекле в сторону катода, т. е. по направлению к спирали. Иными словами, они перемещались к внутренней стенке баллона.

Значит, зеркальный налет изнутри натриевый? Да. Но как же ионы превратились в металл?

Раскаленные металлы (в том числе и те, из которых изготовлена спираль) испускают электроны. От спирали они попали на внутреннюю поверхность стекла и соединились там с ионами натрия. Так образовался металлический натрий.

Но почему для опыта не годится калиевая селитра? Ведь нитрат вроде бы и не участвует в процессе... Нет, участвует. Когда ион натрия стал нейтральным атомом, в стекле осталась отрицательно заряженная ионная дырка. Тут и нужна натриевая селитра: из ее расплава под действием электрического поля в стекло проникают ионы натрия и заполняют дырки. А ионы калия примерно в полтора раза больше ионов натрия, они не смогут войти в стекло. В калиевой селитре лампа просто треснет.

Такой необычный электролиз через стекло иногда применяют на практике, чтобы получить слой очень чистого натрия, или, более строго, - спектрально чистого.

ДОЛГАЯ ЖИЗНЬ БАТАРЕЙКИ

Представьте, что случилось такое: вы принялись за электрохимический опыт, собрали цепь - а батарейка вдруг "села", и запасной батарейки нет. Как быть? Но это еще полбеды. Гораздо хуже, когда карманный фонарик гаснет темным вечером, да еще в лесу. И как обидно, если батарейки транзисторного приемника отказывают как раз в ту минуту, когда по радио передают вашу любимую песню, или во время трансляции футбольного матча. Но что уж тут поделаешь...

Назад Дальше