Штурм абсолютного нуля - Бурмин Генрих Самойлович


О сколько нам открытий чудных

Готовят просвещенья дух

И опыт, сын ошибок трудных,

И гений, парадоксов друг…

А. С. Пушкин

Ранняя весна 1987 года несомненно войдет в грядущую летопись мировой науки как одна из наиболее ярких дат.

Представление о накале событий тех дней дает репортаж, опубликованный в одной из нью — йоркских газет в марте месяце того года:

«…Физики трех континентов предприняли атаку на один из нью — йоркских отелей, чтобы стать участниками созванной на скорую руку конференции…

Двери конференц — зала открыли в среду ранним вечером перед ревущей, блистающей всеми красками толпой, внезапно потерявшей свое профессорское достоинство. В течение трех минут она заполнила все 1200 мест для сидения, после чего еще около 1000 физиков набились в проходы между рядами и заняли места у простенков зала. Сотни других сражались у дверей за право войти.

Заседание продолжалось до трех часов ночи. Доклады транслировались по телемониторам, расположенным по гостиничным коридорам, около которых сгруппировались не попавшие на заседание ученые… Даже после официального закрытия обсуждение продолжалось до шести часов утра…

Это феномен, ничего подобного в истории физики еще не было, — сказал Теодор Гебалл из Стенфордского университета…»

В те мартовские дни ученые осаждали и конфе — ренц — зал Института физических проблем имени С. И. Вавилова Академии наук СССР.

На научных форумах и в Москве и в Нью — Йорке обсуждалось одно и то же событие — открытие высокотемпературной сверхпроводимости.

Трудно назвать другое открытие в мировой науке со столь сложной, причудливой и вместе с тем увлекательной судьбой.

История первооткрытия сверхпроводимости тесно связана с развитием физики низких температур.

Известно, что на верхний предел температур природа никаких ограничений не наложила. На Земле, в зоне термоядерных реакций, достигнуты температуры в сотни миллионов градусов, а в недрах звезд температуры составляют миллиарды и триллионы градусов.

Однако нижний предел температур строго ограничен законами физики. Это абсолютный нуль по шкале Кельвина или минус 273 градуса по Цельсию. Перейти этот рубеж не дано ни на Земле, ни в космосе, но и приблизиться к нему было совсем не легко.

Чтобы проникнуть в манящую своей загадочностью и недоступностью область температур вблизи абсолютного нуля, открыть удивительное физическое явление — сверхпроводимость, ученым пришлось преодолеть многочисленные препятствия.

Рассказом об этом своеобразном штурме абсолютного нуля и начинается эта книга.

Длину мы измеряем в метрах, массу — в граммах, время в секундах, а температуру в градусах.

Расстояние между городами исчисляется в десятках и сотнях километров, высота здания в метрах, а межатомные расстояния в стомиллионных долях сантиметра. Но во всех случаях эти величины положительные.

Выпуск продукции промышленных предприятий планируется в тоннах, в повседневной жизни мы имеем дело с килограммами и граммами. А для того чтобы выразить в граммах массу мельчайшей материальной частицы электрона, мы после запятой, перед первой значащей цифрой, должны написать 26 нулей. И все же это величина положительная.

И если вы прочтете в задачнике, что «расстояние между пунктом А и пунктом Б равно минус 5 метров», то сразу догадаетесь, что знак «минус» здесь опечатка.

Такой же бессмысленностью в обыденной жизни представляются «отрицательный вес» и «отрицательное время». Но если вы скажете, к примеру, что температура воздуха равна минус 10 градусов, то этим вы никого не удивите.

В чем же здесь дело?

Если мы говорим, например, положительный человек, то это самый большой комплимент. Наоборот, отрицательные явления надо изживать.

Почему же так «обидели» температуру? Мы ей приписываем как положительные, так и отрицательные значения, в то время как другим физическим величинам только положительные.

Справедливо ли это?

Когда мы измеряем длину с помощью линейки или рулетки, взвешиваем предмет или запускаем стрелку секундомера, то при отсчете на шкале прибора или приспособления мы исходим из отметки «нуль», соответствующей наименьшему возможному значению величины. Поэтому во всех трех случаях значения измеряемых величин не могут быть меньше нуля.

Когда же впервые разрабатывались температурные шкалы, никто даже приблизительно не знал, какая может быть наименьшая температура, то есть с какой точки нужно начинать отсчет.

В 1714 году немецкий физик — самоучка Габриель Фаренгейт за «нуль», то есть за низшую точку температурной шкалы, принял температуру смеси снега и нашатыря. За вторую опорную точку Фаренгейт принял, как он утверждал, нормальную температуру человеческого тела. Интервал между этими двумя точками он разбил на 100 равных делений. Каждое такое деление получило название «градус Фаренгейта», обозначаемый так: °Р (по первой букве фамилии ученого Fahrenheit).

По шкале Фаренгейта точка таяния льда +32

В действительности нормальная температура человеческого тела не 100°F, а примерно 98°F.

Наличие двух разных температурных шкал создает определенные неудобства, особенно в наш век, когда контакты между людьми разных стран и континентов становятся все более тесными.

Однажды в гостинице одного из городов Европы остановился американский промышленник. Назовем его мистер Смит.

По приезде мистер Смит (он был человек предусмотрительный) вынул из чемодана взятый из дому привычный для него термометр Фаренгейта.

Однако в спешке (прибыло еще много других гостей) горничная перепутала и установила термометр Фаренгейта за окном соседнего номера, где остановился турист из Парижа — месье Поль, а в номере американца остался числящийся по описи гостиницы термометр Цельсия.

Вот что из этого вышло.

Представьте себе утро погожего дня ранней весны. Хотя столбик термометра еще стоит на нуле по Цельсию, под солнечными лучами уже начинает подтаивать. На выходе из гостиницы остановились двое.

Один из них — обливающийся потом американец, облаченный в тяжелую шубу. Он закутал свое лицо так, что виднеется только кончик носа. Рядом подпрыгивает, стуча от холода зубами, француз. Он оделся так, будто в знойный день собрался на пляж.

Этому предшествовали следующие события.

Проснувшись, мистер Смит первым делом взглянул на термометр (он был уверен, что это термометр Фаренгейта, а на самом деле это был, как мы уже знаем, термометр Цельсия).

«Брр, какой ужасный мороз», — подумал американец: столбик термометра стоял на отметке 0° (используя приведенную выше формулу, легко подсчитать, что 0° по Фаренгейту соответствует минус 18° по Цельсию).

Естественно, мистер Смит экипировался соответствующим образом.

В то же самое время месье Поль, который не подозревал, что за окном его номера установлен термометр Фаренгейта, воскликнул:

— Какая тропическая жара, черт побери!

Термометр показывал плюс 32 градуса.

Разумеется, подобные казусы в обыденной жизни бывают не так уж часто. Однако отсутствие объективной температурной шкалы создавало немалые трудности при проведении исследований, связанных с измерением температуры.

Французский химик и физик Жозеф Гей — Люссак в 1802 году обнаружил интересную зависимость. Оказалось, что объем данной массы газа при постоянном давлении изменяется прямо пропорционально изменению температуры. При этом каждый раз при изменении температуры газа на 1 °C объем газа изменяется на одну и ту же величину независимо от природы газа, а именно на 1/273 его объема при 0 °C.

Так в физику вошел закон Гей — Люссака.

Этот закон позволил сделать интересные выводы.

Представьте себе следующий воображаемый опыт. Вы имеете некоторый объем газа, находящегося под постоянным давлением, и охлаждаете его начиная от 0 °C.

При охлаждении ка 1 °C объем газа уменьшается на 1/273 часть его первоначального объема. Вы охлаждаете газ еще на 1 °C, и уменьшение его объема составляет уже 2/273 части первоначального объема, и т. п. Наконец, при охлаждении на 273 °C… Но стоп! Мы слишком увлеклись. Ведь при охлаждении на 273 °C объем газа вообще должен был исчезнуть.

Значит, — 273 °C является наименьшей температурой, к которой можно подойти сколь угодно близко, но никогда нельзя достичь. Следовательно, естественно выбрать за исходную точку температуры, то есть за абсолютный нуль температуры, именно —273 °C.

Так возникла идея шкалы абсолютной температуры.

Но следует заметить, что при достаточно низкой температуре газ начинает сжижаться и закон Гей-Люссака не применим. В этом смысле наш воображаемый опыт не вполне корректен.

Более строгое доказательство того, что ни одно тело не может быть охлаждено ниже абсолютного нуля, основанное на втором законе термодинамики, принадлежит английскому физику Уильяму Томсону (лорду Кельвину), который в 1848 году ввел в науку понятие об абсолютной температуре и абсолютную шкалу температур.

Поэтому шкалу абсолютной температуры принято называть шкалой Кельвина или термодинамической температурной шкалой, а температуру, определяемую по этой шкале, — термодинамической.

Последующие измерения позволили так лее уточнить значение абсолютного нуля температуры. Оно оказалось равным —273,15 °C.

В Международной системе единиц измерения физических величин, принятой международным форумом — XI Генеральной конференцией по мерам и весам в 1960 году, одной из шести основных единиц является единица термодинамической температуры — кельвин, обозначаемая буквой К (устаревшее название «градус Кельвина» или °К). Один кельвин равен одному градусу Цельсия.

Для того чтобы градусы Цельсия перевести в кельвины, достаточно к числу градусов Цельсия добавить 273,15. Следовательно, температура таяния льда составляет 273,15 К, а точка кипения воды 373,15 К.

Удобство термодинамической температурной шкалы заключается в первую очередь в отсутствии отрицательных температур. Эта шкала широко используется при научных исследованиях и в технике.

В повседневной жизни мы пока пользуемся шкалой Цельсия, так как к большим числам, в которых выражается температура в кельвинах, сразу привыкнуть трудно.

Вполне очевидно, недалеко время, когда шкала Кельвина станет единой, как это предусмотрено международными соглашениями.

Понятие абсолютной температуры было введено в науку в середине прошлого века. Однако прошло свыше ста лет, прежде чем шкала Кельвина получила официальное признание.

Почему так получилось?

В температурной шкале Цельсия нуль вполне ощутимая точка. Тело, охлажденное до такой температуры, вы можете потрогать рукой.

Абсолютный нуль температуры выведен на основании теоретических умозаключений, подобно тому как случается, что астроном «вычисляет» далекую планету еще до того, как ее удается обнаружить с помощью оптических приборов.

Чтобы приблизиться к абсолютному нулю, нужно было получить температуру гораздо ниже, чем в самой холодной точке нашей планеты.

Более двухсот семидесяти градусов отделяет область абсолютного нуля температуры от нуля градусов Цельсия.

Много это или мало?

Повышать температуру на сотни и даже тысячи градусов человек научился еще во времена глубокой древности, пожалуй начиная с того момента, когда он впервые добыл огонь.

Техникой получения низких температур человек овладел в результате долгого пути исторического развития. Спуститься «вниз» по температурной шкале оказалось значительно труднее, чем подняться «вверх».

…Если у вас в комнате все вещи находятся в определенном порядке, то легко можно найти нужный предмет.

Однако если вы, вернувшись из школы, бросите портфель куда попало, а переодевшись, не уложите аккуратно вашу одежду в шкафу, разбросаете в беспорядке по комнате, то вам придется затратить немало времени для поиска нужной вещи.

Устроить беспорядок проще всего. Гораздо труднее восстановить порядок.

Существует общий закон природы, согласно которому термодинамические процессы самопроизвольно идут в направлении от более упорядоченного состояния к менее упорядоченному.

Можно привести немало примеров в подтверждение этого закона.

Если бросить в стакан с водой кусок сахара, то сахар через некоторое время растворится в воде, его молекулы распределятся по всему объему стакана равномерно. Вы можете ждать практически сколь угодно долго, но раствор сам по себе не разделится на сахар и воду.

При повышении температуры кристаллы превращаются в жидкость, а затем в газ.

В твердом теле каждый атом (или молекула) занимает определенное положение в пространстве. Он может совершать колебания около положения равновесия, но далеко уйти от отведенного ему места атом, как правило, не в состоянии. В этом смысле в твердом теле существует почти идеальный порядок.

В жидкости молекулы (или атомы) «упакованы» почти так же плотно, как в твердом теле. Однако в отличие от твердого тела они не находятся здесь «на привязи»: они сравнительно легко меняют свое положение. Следовательно, в жидкости гораздо меньше порядка, чем в твердом теле.

В газах расстояние между молекулами (атомами) в среднем во много раз больше размера самих молекул. Атомы и молекулы перемещаются в пространстве с огромными скоростями. Сталкиваясь, они отскакивают друг от друга, словно бильярдные шары. Чем сильнее нагревается газ, тем беспорядочнее становится движение его молекул.

Итак, при нагревании вещества его атомы или молекулы переходят из более упорядоченного в менее упорядоченное состояние, что не противоречит естественному ходу событий. Получить высокие температуры (до десятков и сотен тысяч градусов) сравнительно легко.

Дальше