Независимо от Менделеева подобное исследование провел английский физик Томас Эндрюс, который ввел в науку термин «критическая температура».
Представьте себе закрытый сосуд, в котором находится некоторое количество жидкости, например воды. В результате испарения над жидкостью образовывается насыщенный пар. При этом одно и то же вещество существует одновременно в двух состояниях, или, как говорят физики, в двух фазах — жидкой и газообразной.
При комнатной температуре плотность пара значительно меньше плотности соответствующей жидкости.
С повышением температуры плотность жидкости уменьшается, а плотность газа увеличивается.
Наконец наступает момент, когда плотность жидкости и пара совпадает.
Температура, при которой плотности жидкости и ее насыщенного пара совпадают, называется критической температурой данного вещества.
При температуре выше критической вещество может находиться только в одном состоянии — газообразном. При таких условиях газ невозможно сжижить даже при сколь угодно сильном сжатии.
Критические температуры разных веществ существенно отличаются друг от друга. Например, воды + 374 °C, кислорода —118 °C, водорода — 240 °C.
Однако вернемся к экспериментам Кальете.
Температура кипения кислорода при атмосферном давлении — 183 °C. Следовательно, французскому инженеру удалось преодолеть значительный отрезок пути к абсолютному нулю.
Может быть, кто?либо был склонен объяснить это достижение счастливой случайностью. Ведь мысль о возможном способе сжижения атмосферных газов пришла в голову Кальете в момент аварии его аппарата.
Конечно, и в науке бывают случайности. Но не они решают дело.
Каждый новый шаг в науке подготавливается предыдущими научными открытиями и достижениями в той или иной области.
Кальете в момент своего открытия был уже зрелым ученым.
Он детально изучил работы своих предшественников и ясно видел цель, к которой стремился. Иначе он не заметил бы мгновенно исчезнувшее облачко.
Не случайно многие важные открытия были сделаны разными учеными независимо друг от друга.
Так было и на этот раз.
Почти одновременно с Кальете сжижение кислорода произвел женевский физик Рауль Пикте, действуя другим методом.
Мы уже знаем, что газ, критическая температура которого выше комнатной, можно сжижить сжатием без предварительного охлаждения.
Полученная таким образом жидкость используется для охлаждения второго газа, критическая температура которого значительно ниже комнатной, но выше температуры кипения этой жидкости.
Жидкость, полученную после сжижения второго газа, можно использовать для сжижения третьего газа с еще более низкой критической температурой, и т. п.
Такой метод получил название каскадного.
Пикте сжижил кислород, использовав в первом каскаде двуокись серы, а во втором каскаде — двуокись углерода.
Сообщения об удачном завершении эксперимента Кальете и Пикте были оглашены на собрании Парижской академии наук 24 декабря 1877 года, а через неделю, в самый канун нового 1878 года, Кальете объявил о сжижении азота (температура кипения — 196 °C).
Некоторое время спустя Пикте, пополнив свою установку третьим каскадом, где он применил кислород, сжижил воздух. Воздух, как известно, состоит в основном из азота и кислорода и имеет температуру кипения промежуточную между температурами кипения этих составляющих, а именно — 194,4 °C.
В 1882 году Кальете вернулся к своему эксперименту, применив для охлаждения сосуда со сжатым кислородом этилен вместо двуокиси серы.
Температура первоначального охлаждения понизилась до —105 °C.
Однако облачко сжиженного газа по — прежнему мгновенно исчезало, словно привидение в старинной легенде.
Удержать в сосуде жидкость, кипящую при немыслимо низкой температуре, — такую задачу предстояло решить исследователям.
Здесь успех сопутствовал двум польским физикам 3. Вроблевскому и К. Ольшевскому.
Зыгмунт Флоренты Вроблевский родился в 1845 году в городе Гродно. Окончив гимназию с серебряной медалью, он поступил в 1862 году на физико — математический факультет Киевского университета.
В 1863 году за участие в политической деятельности восемнадцатилетний студент подвергается аресту. Вроблевский проводит шестнадцать месяцев в тюремных застенках Гродно и Вильно, откуда его гонят по этапу в ссылку в город Томск.
Только в 1869 году, амнистированный по «высочайшему манифесту», Вроблевский смог вернуться домой.
Стремясь получить научное образование, опальный студент едет в Германию.
Нелегко пришлось на чужбине молодому человеку, обладающему весьма ограниченными материальными средствами. Приходилось довольствоваться мизерной денежной помощью, которую могли оказать родители, и случайными гонорарами за научно — популярные статьи в русской газете «Сын Отечества».
В сибирской ссылке Вроблевский усиленно изучал научно — популярную литературу по естественным наукам.
Стремясь творчески познать явления окружающего мира, он разработал новую космическую теорию.
Тщетно пытался Вроблевский заинтересовать своей космической теорией немецких физиков Кир- гофа и Клаузиуса. И тот и другой оказали ему весьма холодный прием.
По — иному встретил Вроблевского видный естествоиспытатель, профессор Берлинского университета Г ерман Гельмгольц.
Он внимательно выслушал посетителя и терпеливо разъяснил его ошибки.
— А если мои доводы вас не убедили, то почему ж вам не провести эксперименты в моей лаборатории? — спросил Гельмгольц, доброжелательно глядя на юношу, жаждавшего посвятить свою жизнь науке.
Вроблевский с радостью принял это предложение.
Вскоре он убедился в ошибочности своих космических взглядов и занялся проблемой, имеющей важное значение для развития физики, — исследованием свойств газов.
В 1874 году, после защиты докторской диссертации, Вроблевский получил должность ассистента, а затем доцента при кафедре физики Страсбургского университета.
Работы молодого ученого получили признание научного мира. Они заслужили высокую оценку одного из корифеев науки — английского физика Максвелла.
Польские физики с понятным интересом следили за научными успехами своего соотечественника.
Вроблевский получает приглашение перейти на работу в Краковский университет.
До возвращения на родину Вроблевский в течение одного года работал в лаборатории известного в то время химика, члена Парижской академии наук Сент — Клер Девиля, где он провел ряд экспериментов с аппаратом Кальете.
Наблюдая за голубоватым облачком сжиженного кислорода, внезапно появляющегося внутри толстостенного сосуда, чтобы сразу исчезнуть, словно мираж в пустыне, исследователь задумался над вопросом: как удержать необычайно холодную жидкость?
В 1882 году Вроблевский возглавил кафедру физики в Краковском университете. Он немедленно выписал из Парижа аппарат Кальете.
С не меньшим нетерпением ждал прибытия французского аппарата и другой краковский физик — Кароль Ольшевский. Он в течение многих лет безуспешно работал над усовершенствованием устаревшего оборудования для сжижения газов.
Ольшевский пришел в восторг, когда увидел в Кракове современную аппаратуру Вроблевско- го. Физики стали работать вместе.
Краковская установка для сжижения кислорода была собрана в феврале 1883 года. А уже в апреле того же года в трубке аппарата «спокойно» кипела голубоватая жидкость.
Вроблевский и Ольшевский усовершенствовали аппаратуру Кальете.
Стеклянная трубка была изогнута так, что собирающийся в ней жидкий кислород не мог уходить через расширяющуюся верхушку, а удерживался в нижней части трубки.
Далее, для охлаждения трубки использовался жидкий этилен, кипящий не при атмосферном давлении, как это было в экспериментах Кальете, а при давлении в 2,5 сантиметра ртутного столба, то есть в тридцать раз меньшем. Температура была понижена до — 130 °C.
После того как в трубку был введен кислород под высоким давлением, сквозь прозрачную стенку можно было увидеть капельки жидкости, которые, скатываясь, собирались на донышке. «Призрак» приобрел реальное очертание.
Кислород был сжижен без использованного Кальете первоначального расширения газа.
Предоставленный самому себе, мальчик проводил много времени у деревенского столяра, который научил его делать скрипки.
Очевидно, именно тогда у будущего ученого развились ловкость, сноровка и привычка к тонкой физической работе.
Биографы Дьюара отмечают, что в день его золотой свадьбы играли на одной из скрипок, сделанной им самим. На ней была надпись: «Джеймс Дьюар, 1854».
По окончании Эдинбургского университета Дьюар начинает в этом же университете читать лекции по химии. В 1877 году он получает профессуру в Лондонском королевском институте, где работает до последних дней своей жизни.
Научные интересы Дьюара были весьма разнообразны. Но его наиболее выдающиеся достижения относятся к области низких температур.
Узнав о сжижении кислорода, Дьюар выписывает из Парижа аппаратуру и уже летом 1878 года демонстрирует капли жидкого кислорода на своих публичных вечерних чтениях по пятницам.
Работы, проведенные Дьюаром в королевском институте, и его непрерывные демонстрационные опыты наглядно свидетельствовали о том, что сжиженные газы могут и должны «спокойно кипеть в пробирке». Для этого необходимо выполнение двух условий: первое — наличие достаточного количества сжиженного газа, второе — соблюдение предосторожностей, препятствующих немедленному испарению жидкого газа.
Первая проблема к тому времени была уже решена краковскими физиками. Они же наметили путь для решения второй задачи. Напомним, что трубка, в которой сжижался кислород, помещалась в сосуд с жидким этиленом. Образующиеся при испарении этилена холодные пары мешали притоку тепла извне.
Вот тогда в научной терминологии появилось новое слово — криостат (от греческого слова «кри- ос» — холодный). Так стали называть сосуд специальной конструкции, предназначенный для хранения сжиженных газов. Сама же техника получения низких температур получила название криогеники или криогенной техники.
Криостат недолго оставался неразделимой частью аппаратуры для сжижения газов. Скоро этот процесс был видоизменен, так что жидкость из расширительной емкости выпускали через отводную трубку в криостат, который потом можно было отсоединить от установки. Это значительно упростило манипуляции с жидким газом и облегчило проведение экспериментов.
В ту пору криостат представлял сосуд для жидкого газа, погруженный в стеклянный стакан, который был соединен с сосудом пробкой. Получался резервуар с двойными стенками. На дно стакана помещался сушильный агент (вещество, способное впитывать влагу), поглощающий водяные пары в пространстве между стеклянными стенками, препятствующий таким образом образованию изморози.
Теперь во время чтения лекций Дьюар вносил в лекционный зал жидкий кислород, приготовленный заранее, и демонстрировал его свойства перед слушателями.
За десять лет, прошедших с момента первого удачного опыта сжижения кислорода, техника эксперимента в области криогеники шагнула вперед.
Но исследователей, стремящихся продолжать марш к абсолютному нулю, тревожило одно немаловажное обстоятельство.
Для превращения жидкости в пар требуется некоторое количество тепла, называемое скрытой теплотой парообразования или испарения. Теплота испарения кислорода, в пересчете на один грамм, в десять раз меньше, чем у воды. Поэтому для сохранения кислорода в жидком состоянии более или менее продолжительное время криостат нуждался в хорошей тепловой изоляции. А скрытая теплота испарения водорода, согласно оценке ученых того времени, по крайней мере в четыре раза меньше скрытой теплоты испарения кислорода.
Это означало, что если водород все?таки удастся сжижить, то его нельзя будет сохранить в течение какого?либо времени в криостате применяемой тогда конструкции.
На лекции 20 января 1893 года Дьюар демонстрирует вакуумный сосуд, получивший впоследствии его имя, столь совершенной конструкции, что она осталась неизменной вплоть до наших дней[2].
Читатель уже знает, что первоначально в течение ряда лет применялись криостаты с двойными стенками, пространство между которыми можно было освободить только от водяных паров. Дьюар существенно усовершенствовал конструкцию криостата, откачав воздух из пространства между стенками до глубокого вакуума. В результате резко уменьшился теплообмен между окружающей средой и веществом, находящимся внутри сосуда. Для уменьшения тепловых потерь посредством излучения поверхности стенок, образующих вакуумное пространство, покрываются тонким слоем серебра и полируются.
На лекции Дьюар с присущим ему артистическим блеском продемонстрировал преимущество своего изобретения по сравнению со старым типом криостата. Сначала он показал жидкий кислород, находящийся в спокойном состоянии, словно обычная вода.
Затем он отломил носик на стеклянном баллоне; как только воздух попал между стенками, жидкий кислород начал интенсивно кипеть.
Изобретение Дьюаром вакуумного сосуда — огромный шаг вперед в технике низких температур.
Возможность длительного хранения жидких газов в сосудах Дьюара позволила теперь исследователям проводить эксперименты со значительно большими количествами жидкого газа, исчисляющимися уже не кубическими сантиметрами, а литрами.
Решив эту проблему, Дьюар смог непосредственно заняться сжижением водорода.