Этим же вопросом занимался Дьюар, проводивший измерения при температуре жидкого азота. Он обнаружил, что сопротивление платины при понижении температуры падает с меньшей скоростью, чем предполагалось.
Считалось, что этот результат подтверждает другую теорию, согласно которой носители заряда при абсолютном нуле должны быть прочно связаны с атомами. Следовательно, электрическое сопротивление при самых низких температурах должно быть бесконечно большим.
Итак, существовали две взаимно противоположные точки зрения. Чему же, в конце концов, должно быть равно электрическое сопротивление при абсолютном нуле: нулю или бесконечности? При таких обстоятельствах к попыткам решить эту проблему подключился Камерлинг — Оннес.
Оннес начал эксперименты с той стадии, на которой их окончил Дьюар: он приступил к определению сопротивления платины уже при гелиевых температурах.
Результаты сначала были мало обнадеживающими: они не подтверждали и не опровергали никакую теорию. Электрическое сопротивление ни падало, ни росло при понижении температуры — оно оставалось постоянным. Оннес заметил, что абсолютная величина сопротивления в его экспериментах не зависит от температуры — она меняется от образца к образцу, и чем чище металл, тем ниже сопротивление. Скорее всего, прав был Нернст, решил Оннес, и сопротивление должно уменьшаться при снижении температуры, но этому препятствуют примеси.
Надо уничтожить примеси. Оннес знал, что золото легче очистить от примесей, чем платину, и он приступил к экспериментам с проводами из самого чистого золота, которое ему удалось достать. Хотя полученные при измерениях значения сопротивления были много ниже, чем у платины, однако и на сей раз сопротивление золота падало с увеличением степени его чистоты.
Но разве исчерпаны все возможности? Ведь существует и другой металл, который можно получить в еще более чистом виде, чем золото. Это ртуть.
Поскольку ртуть при комнатной температуре находится в жидком состоянии, ее можно перегонять вновь и вновь сколько угодно раз, пока не будет достигнута требуемая степень чистоты.
В середине 1911 года Оннес проводит эксперимент, всю значимость которого оценили лишь много лет спустя.
На следующей странице изображена кривая зависимости электрического сопротивления ртути от температуры, построенная на основании результатов этого эксперимента. С понижением температуры сопротивление ртути постепенно уменьшается — кривая более или менее плавно снижается. Вот температура упала до точки кипения гелия, вот она стала чуть меньше.
Что произойдет дальше? Может быть, кривая, в соответствии с теорией Нернста, будет так же плавно снижаться вплоть до абсолютного нуля температуры?
Может быть, наоборот, кривая круто повернет вверх, устремляясь в бесконечность, как это следовало бы ожидать из результатов Дьюара?
Оказывается, при температуре несколько ниже точки кипения гелия кривая резко повернула вниз, словно провалившись в пропасть. Электрическое сопротивление ртути внезапно исчезло.
Ученый снова и снова повторял эксперимент: ход кривой повторялся с завидным постоянством.
С тех пор в науку вошло новое понятие — сверхпроводимость — явление скачкообразного исчезновения электрического сопротивления металла при охлаждении его до достаточно низкой температуры.
Вскоре оказалось, что явление сверхпроводимости присуще не только ртути, но и олову, свинцу, некоторым другим металлам и сплавам, причем каждый из них имеет свою температуру перехода в сверхпроводящее состояние, которую принято называть критической температурой.
Мы говорим, что сверхпроводимость характеризуется исчезновением электрического сопротивления. Но если сопротивление «исчезает», то как его измерить?
Физики на слово не верят. Между тем каждый, даже самый точный физический прибор обладает некоторой погрешностью измерения. Если, к примеру, стрелка амперметра, включенного в электрическую цепь, стоит на нуле, то не спешите делать вывод, что в цепи нет никакого электрического тока. Вы можете только сказать, что ток в цепи не превышает некоторую, пусть очень малую величину, определяемую чувствительностью прибора (эта величина обычно указывается в паспорте прибора).
Каким же образом Камерлинг — Оннесу удалось измерить исчезновение электрического сопротивления?
Оннес изготовил катушку из свинцового провода и поместил ее в сосуд Дьюара, заполненный жидким гелием. Катушка охладилась до сверхпроводящего состояния. Она была подключена через первый ключ к электрической батарее, а с помощью второго, сверхпроводящего ключа катушку можно было замыкать накоротко. В начале эксперимента первый ключ был замкнут, а второй разомкнут. При этом ток, возбуждаемый батареей, проходил через катушку, создавая вокруг нее магнитное поле. Под влиянием этого поля отклонялась стрелка магнитного компаса, расположенного вне сосуда Дьюара. Затем второй ключ замыкался, а первый размыкался. Таким образом, свинцовая обмотка оказалась замкнутой накоротко. Однако стрелка компаса оставалась отклоненной, показывая, что ток все еще протекал через обмотку, хотя она теперь от батареи не питалась.
Если бы обмотка обладала каким?нибудь, даже очень малым электрическим сопротивлением, то ток в катушке постепенно уменьшался бы во времени, или, как говорят физики, затухал, вплоть до его полного исчезновения.
Но ничего подобного не произошло. В свинцовой обмотке все время циркулировал электрический ток. И до тех пор пока через несколько часов жидкий гелий в сосуде Дьюара полностью не испарился и обмотка перестала быть сверхпроводящей, не было ни малейшего изменения отклонения стрелки.
Исчезновение электрического сопротивления: 1 — батарея; 2 — первый ключ; 3 — жидкий гелий; 4— второй ключ; 5— свинцовая катушка; 6— стрелка магнитного компаса. В сверхпроводящей катушке при замкнутом ключе 4 циркулирует незатухающий электрический ток.
«Незатухающий», как его принято называть, электрический ток оставался неизменным.
В дальнейшем Оннес сделал свой эксперимент еще более простым и наглядным.
Представьте себе свинцовое кольцо. Введите в него постоянный магнит, и в отверстии кольца возникнет магнитное поле. Теперь охладите кольцо до состояния сверхпроводимости. Стоит вам вынуть магнит из кольца, как в результате изменения внешнего магнитного поля в сверхпроводящем кольце возникнет незатухающий электрический ток. В этом можно убедиться с помощью той же стрелки компаса.
Оннес повторял свои эксперименты, повторяли после него и другие исследователи. Но у них была более совершенная аппаратура, применялись более чувствительные измерительные приборы и опыты длились более продолжительное время.
Еще в пятидесятых годах нынешнего века в одной из зарубежных лабораторий наблюдали циркуляцию незатухающего тока в сверхпроводящем кольце в течение двух с половиной лет. По истечении этого периода эксперимент пришлось прервать. Из?за забастовки транспортных рабочих прекратилось снабжение лаборатории жидким гелием.
Даже спустя два с половиной года после начала эксперимента не было зафиксировано ни малейшего ослабления тока в кольце.
По современным оценкам удельное электрическое сопротивление сверхпроводника в 100 миллионов триллионов раз меньше, чем у медного провода при комнатной температуре. Это значит, что ток, возбужденный в сверхпроводящем кольце, способен протекать без затухания в течение 15 миллиардов лет.
Поэтому мы очень близки к истине, считая, что электрическое сопротивление сверхпроводника равно нулю.
Уже первые опыты со сверхпроводящими цепями убедили исследователей в том, что они столкнулись с удивительным явлением, практическое использование которого обещает сказочные перспективы.
Казалось, что по сверхпроводящим проводам и кабелям можно передавать электрический ток на сколь угодно большие расстояния без потерь.
Мыслилось, что свинцовая сверхпроводящая обмотка, подобная использованной в первых экспериментах Камерлинг — Оннеса по сверхпроводимости, идеально подходит для создания сильных магнитных полей. Ведь в случае обычного проводника с током мощность расходуется на тепловые потери.
Мощные сверхпроводящие магниты и трансформаторы без потерь, так же как и другие виды электрических машин, имеющих сверхпроводящие обмотки, сулили грандиозные возможности.
Однако, оказалось, стоит напряженности магнитного поля превысить некоторое «критическое» значение, как явление сверхпроводимости исчезает; катушка становится обычным проводником.
Поскольку всякий ток создает магнитное поле, существует критическая величина тока, текущего по сверхпроводнику, при которой происходит разрушение сверхпроводимости. При этом критическое магнитное поле для чистых металлов обычно не превышало сотых долей тесла — величину, меньшую той, которая требуется даже для небольших электрических машин.
Но интерес исследователей к такому удивительному явлению, как сверхпроводимость, не ослаб.
К ртути, свинцу и олову вскоре прибавились новые сверхпроводники: индий, галлий и таллий. Эти металлы по своим физическим свойствам похожи друг на друга: они мягки, их температуры плавления невысоки.
Вскоре сверхпроводники были обнаружены и среди более тугоплавких и твердых металлов… Это тантал, ниобий, титан и торий.
Когда был сжижен гелий, газ с самой низкой температурой кипения, и откачаны над ним пары, казалось, что самая низкая возможная температура уже достигнута.
Однако, после того как в 1926 году был открыт так называемый метод магнитного охлаждения, появилась возможность проникнуть в область еще более низких температур. Здесь исследователей ждали новые открытия.
Но прежде разберем вкратце, в чем заключается сущность метода магнитного охлаждения.
Частицы (атомы, ионы, молекулы) парамагнитного вещества ведут себя как маленькие магнитики.
Из?за теплового движения эти магнитики ориентированы совершенно беспорядочно.
Правда, при низких температурах, когда тепловое движение ослаблено в значительной степени, силы взаимодействия между магнитиками могут заставить их расположиться правильным образом. Но если магнитики находятся далеко друг от друга, то силы взаимодействия не хватает для наведения порядка и магнитный беспорядок сохраняется до самых низких температур.
Такие явления наблюдаются в очень сложных по своему составу парамагнитных солях, в которых, кроме магнитных частиц, есть много других немагнитных частиц, например в цериевомагниевом нитрате. В этом веществе магнитиками являются только ионы церия. Но на каждый ион церия приходится примерно 60 других, немагнитных атомов.
Магнитики так сильно разбавлены немагнитными частицами, что беспорядок в ориентации ионов церия сохраняется даже при очень низких температурах.
В парамагнитном веществе беспорядок может изменяться не только при изменении его температуры, но и при изменении его магнитного состояния.
Если парамагнитную соль поместить в постоянное магнитное поле, то все магнитики — ионы выстраиваются вдоль силовых линий магнитного поля. Таким образом, наводится порядок в ориентации ионов. Если это поле убрать, снова создается беспорядок.
Практически магнитное охлаждение осуществляется следующим образом (см. схему на стр. 72).
Парамагнитную соль, находящуюся в ампуле а, заполненной газообразным гелием, помещают в сосуд с жидким гелием, температура которого равна примерно 1К, расположенный в магнитном поле между полюсами электромагнита (1).
Газообразный гелий в ампуле обеспечивает хороший тепловой контакт с жидким гелием. Таким образом, температура парамагнитной соли совпадает с температурой окружающего жидкого гелия.
Затем из ампулы откачивают газообразный гелий, обеспечив тем самым теплоизоляцию соли от окружающей среды (2).
Потом отключают магнитное поле, что ведет к разориентации магнитиков (3).
На разориентацию магнитиков расходуется энергия теплового движения ионов, что приводит к дальнейшему охлаждению соли.
С помощью этого метода можно получить температуры, лишь на тысячные доли кельвина отличающиеся от абсолютного нуля. В современной технике чаще применяется другой, более удобный способ охлаждения до температур, приближающихся к абсолютному нулю, о котором вы прочтете в главе седьмой.
В интервале «магнитных температур» (от 1К и ниже) была обнаружена новая серия сверхпроводников: кадмий, иридий, рутений, титан и другие.
Магнитное охлаждение: а — ампула; А — жидкий гелий; Б — газообразный гелий; В — вакуум. 1 — под действием магнитного поля магнитики — ионы парамагнитной соли, охлажденной жидким гелием, выстраиваются вдоль силовых линий магнитного поля; 2— откачкой газообразного гелия достигается теплоизоляция соли от окружающей среды; 3— при отключении магнитного поля происходит разориентация магнитиков и дальнейшее охлаждение соли.
Теперь остается представить читателю известные на сегодня сверхпроводящие элементы.
Для этого рядом с названием элемента указываются два числа: критическая температура в кельвинах (К) и критическое магнитное поле в теслах (Т), в тех случаях, когда оно известно.
Алюминий | К | Т |
1,19 | 0,01 | |
Бериллий | 0,026 | - |
Ванадий | 5,3 | 0,14 |
Вольфрам | 0,015 | 0,11 |
Галлий | 1,09 | 0,006 |
6,5 | 0,056 | |
7,5 | 0,95 |
Но почему около галлия стоят сразу три пары чисел?
Оказывается, некоторые элементы существуют в виде двух или большего количества простых веществ, отличающихся друг от друга, например, структурой кристаллической решетки. В науке это явление известно под названием аллотропии (от греческого — «другое свойство»).
Разные аллотропические формы одного и того же элемента могут иметь разные критические температуры перехода в сверхпроводящее состояние и разное критическое магнитное поле.
Но продолжим наш «парад».
К | Т | |
Индий | 3,4 | 0,03 |
Иридий | 0,14 | 0,002 |
Кадмий | 0,55 | 0,003 |
Лантан | 4,8 | 0,08 |
6,0 | 0,16 | |
Молибден | 0,92 | 0,01 |
Ниобий | 9,2 | 0,2 |
Олово | 3,72 | 0,03 |
5,3 |