Физиологам известно также, что такая сложнейшая врожденная форма поведения, как регуляция обменного равновесия (го-меостаза), обеспечиваемая дыханием, пищеварением и терморегуляцией, осуществляется посредством механизмов, заложенных в верхних отделах ствола (продолговатом мозге, гипоталамусе); при нарушении их соответствующие процессы расстраиваются; грубые поражения этих механизмов могут привести к нарушению «витальных функций» и смерти.
Кроме того, физиологи и неврологи знают, что еще более сложные формы поведения, предполагающие обеспечение тонуса, синергий и координацию, тесно связаны с работой межуточного мозга и подкорковых двигательных узлов (таламо-спинальной системы); поражение их, не вызывая нарушения сложных познавательных процессов, приводит к грубому нарушению «фонового» поведения. Особый интерес в связи с этой проблемой представляют результаты наблюдений над больными, страдающими паркинсонизмом, накопившиеся за последние три десятилетия в результате широкого изучения эпидемического энцефалита и распространения стереотактических операций.
Наконец, хорошо известно, что наиболее сложные формы деятельности не могут быть обеспечены без участия коры головного мозга, являющейся органом высших форм поведения животных и сознательного поведения человека.
Таким образом, ясно, что сложные рефлекторные процессы и сложные формы поведения могут осуществляться разными уровнями нервной системы, каждый из которых вносит в функциональную организацию поведения свой вклад.
Последние десятилетия позволили во многом уточнить только что обозначенное положение. Было показано, что низшие уровни нервного аппарата участвуют в организации работы коры больших полушарий, регулируя и обеспечивая ее тонус.
20
Роль нижних отделов ствола и образований межуточного мозга в обеспечении и регуляции тонуса коры была показана сравнительно недавно благодаря классическим работам Мэгуна и Моруцци (1949 и др.), посвященным так называемой восходящей активирующей ретикулярной формации.
Забывать об участии низших уровней мозгового аппарата в наиболее сложных формах поведения и игнорировать тот факт, что они обеспечивают нужное состояние коры и выступают как регулятор общего фона психической деятельности, значило бы сейчас допускать серьезную ошибку. Далее (ч. первая, гл. III) мы остановимся на этом вопросе подробнее.
Аппараты стволового уровня не работают в полной изоляции от коры головного мозга и сами испытывают ее регулирующее влияние.
Работы Мак-Кэллока и др. (1946), Френча и др. (1955), Линдсли (1955, 1956, 1961), Жувэ и др. (1956, 1961), Эрнандес-Пеона (1966, 1969) и большое число исследований, на которых мы еще остановимся далее, показали огромную роль нисходящей активирующей ретикулярной формации, направляющей импульсы от коры головного мозга к нижележащим образованиям и приводящей аппараты регуляции тонуса в соответствие с информацией, получаемой субъектом, и с задачами, которые он ставит перед собой.
Данные, полученные в современных анатомических и физиологических исследованиях, позволяют сформулировать принцип вертикального строения функциональных систем мозга, иначе говоря, принцип, согласно которому каждая форма поведения обеспечивается совместной работой разных уровней нервного аппарата, связанных друг с другом как восходящими (летальными), так и нисходящими (фугальными) связями, превращающими мозг в саморегулирующуюся систему.
Этот прочно вошедший в науку принцип утверждает, что кора головного мозга, находящаяся в постоянном взаимодействии с нижележащими образованиями, не является единственным мозговым субстратом психических процессов.
Этот принцип делает понятным и те факты, которые ставили в тупик многих исследователей прошлого. Было показано, что разобщение отдельных зон коры путем круговой изоляции может не влечь за собой существенных изменений в поведении животных, в то время как подрезка коры, изолирующая ее от нижележащих образований, неизбежно приводит к значительным нарушениям ее регулирующих функций (Чоу, 1954; Сперри, 1959; Прибрам, Блейрт, Спинелли, 1966). Все это означает, что отдельные участки коры головного мозга соединяются между собой не только с помощью горизонтальных (транскортикальных) связей, но и через нижележащие образования, иначе говоря, посредством системы вертикальных связей.
21
Имея в виду сформулированные выше положения об эволюции нервных аппаратов, основных уровнях нервной системы и их взаимодействии, мы переходим сейчас к рассмотрению данных, которыми располагает сравнительная анатомия коры головного мозга.
Структурная и функциональная организация коры головного мозга
Наблюдения, показавшие, что мозг в целом и его кора в частности обладают неоднородным строением, относятся еще к началу прошлого века.
Ф. Галль, известный анатом, вошедший в историю науки как основатель фантастической «френологии» (концепции о функциональной организации мозга, исходящей из представлений о локализации сложных психических «способностей» в его ограниченных участках), впервые отличил серое вещество, составляющее мозговую кору и подкорковые серые образования, от белого вещества, состоящего из проводящих волокон, связывающих отдельные участки коры и соединяющие кору большого мозга с периферией. Однако это открытие, сделавшее Галля подлинным основателем морфологии мозга, долго оставалось без адекватной оценки, и настоящее раскрытие функций коры головного мозга, ее проводящих путей и серого вещества, заложенного в глубине больших полушарий, было сделано лишь спустя несколько поколений.
Значительный шаг вперед был сделан в 1863 г. киевским анатомом В. А. Бецом, занимавшимся микроскопическим изучением клеточного состава мозговой коры. Ему принадлежит открытие, которому было суждено стать началом целой эпохи блестящих исследований.
Описывая строение различных участков мозговой коры, он обнаружил, что их морфологическая структура в высокой степени неоднородна: если кора передней центральной извилины включает в свой состав большие, имеющие форму пирамиды нервные клетки (они получили в дальнейшем название гигантских пирамидных клеток Беца), то прилегающая к ней кора задней центральной извилины имеет совсем иное, мелкозернистое строение и совсем лишена пирамидных клеток (рис. 6).
Рис. 6. Два вида строения коры: а— передняя (моторная) кора; 6— задняя (сенсорная) кора (по Бродману)
Позднее было установлено, что различие этих двух областей коры не только морфологическое, но и функциональное. Гигантские пирамидные клетки Беца (составляющие пятый слой коры) оказались источниками двигательных импульсов, идущих от коры к периферической мускулатуре, а передняя центральная извилина, в которой они были сосредоточены, — моторной областью коры головного мозга. Поля мозговой коры, имеющие мелкозернистое строение и отличающиеся развитым четвертым слоем нервных клеток (к их числу относятся и образования задней центральной извилины), оказались аппаратами, к которым подходят чувствительные волокна, начинающиеся в периферических органах чувств (рецепторах), а соответствующие зоны коры — первичными чувствительными образованиями коры большого мозга.
С выделением двигательных и сенсорных областей (или первичных двигательных и сенсорных центров) был сделан первый шаг к созданию функциональной карты коры головного мозга, и кажущаяся однородной масса серого вещества, покрывающая тонким слоем большие полушария, начала приобретать дифференцированный характер.
Дальнейшие сравнительно-анатомические наблюдения подтвердили плодотворность наметившегося подхода. Оказалось, что внимательное изучение «первичных» областей мозговой коры позволяет делать точные выводы о некоторых особенностях поведения животного. Следующие примеры хорошо иллюстрируют это положение.
23
Рис. 7. Строение двигательной коры:
—
поле 39; Pia —поле 40; Pstc —постцентральная область; ТРО —височно-
теменно-затылочная область; ТИ —зрительный бугор; Cgm —внутреннее
коленчатое тело; Cgl —наружное коленчатое тело (по Г. И. Полякову)
27
Таким образом, в коре головного мозга человека выделяются проекционная общечувствительная (теменная), зрительная (затылочная) и слуховая (височная) области.
Аналогичным образом мы можем проследить волокна, которые, начинаясь в передней центральной извилине и подходя к передним рогам спинного мозга, несут двигательные импульсы к мышцам. Эти волокна составляют двигательный, или пирамидный, путь головного мозга.
Как показали морфологические исследования, над каждой «первичной» зоной коры (с преобладающим развитием IV — афферентного или V — эфферентного слоев клеток) надстраивается система «вторичных» зон, в которых преобладающее место занимают более сложные по своему строению II и III слои. Эти слои состоят из клеток с короткими аксонами, большая часть которых или не имеет прямой связи с периферией, или получает свои импульсы из лежащих в глубине мозга подкорковых образований, осуществляющих первичную переработку приходящих с периферии импульсов. Строение этих слоев позволяет относить их уже не к простейшему — «проекционному», а к гораздо более сложному — «ассоциативному», или «интегрирующему», аппарату коры головного мозга.
Существенным для понимания функции этих слоев коры головного мозга является тот факт, что в процессе эволюции видов удельный вес их непрерывно увеличивается (рис. 12); это показывает, что процесс усложнения психической деятельности, переход от относительно простых, врожденных форм поведения животного к более сложным формам кодирования поступающей информации у человека, предполагающим сознательный характер программирования деятельности, связаны с развитием этих высших слоев мозговой коры.
Рис. 12. Сравнительная
толщина верхних слоев коры
в филогенезе:
а —срезы; б —схема
(по данным Московского