Журнал «Компьютерра» № 16 от 24 апреля 2007 года - Компьютерра Журнал 619 4 стр.


Затмение невидимого

Очень часто ученым приходится входить в ту самую темную комнату, в которой затаилась черная кошка. Время от времени комната оказывается пустой, но это уже вполне ожидаемый результат для людей, которые иногда пытаются изучать то, чего никто никогда не видел, и что существует лишь в теории и на бумаге. Бывает и так, что двери этой комнаты открывают, заранее зная, что кошка невидима вовсе.

Что-то похожее случается, например, когда физики, не имея никакой возможности обнаружить ту или иную элементарную частицу непосредственно, стараются заметить следы ее распада. Астрофизики же изучают черные дыры, прекрасно понимая, что они невидимы по определению, да еще и по всему электромагнитному спектру. Однако ученым из Гарвард-Смитсоновского центра астрофизики и их коллегам из Итальянского астрономического института посчастливилось даже измерить черную дыру.

К радости астрономов, черные дыры ведут себя достаточно шумно. Они поглощают все окружающее вещество, которое, прежде чем навсегда пропасть для наблюдателя за горизонтом событий, собирается в аккреционный диск. Диск вращается вокруг черной дыры и разогревается до миллионов градусов. Рентгеновское излучение, идущее от диска, и выдает черную дыру с головой. В то же время, сам факт регистрации излучения еще не позволяет оценить размеры диска: для этого просто не хватает разрешающей способности телескопов. Но иногда в этом деле помогает случайность. В апреле объектом исследования рентгеновской обсерватории «Чандра» стало ядро галактики NGC 1365. Так уж совпало, что сверхмассивную черную дыру в центре NGC 1365 на время затмило плотное облако газа. Наблюдая это затмение, астрономы сумели по длительности явления вычислить размер аккреционного диска. Он оказался равен примерно семи астрономическим единицам, что хорошо соотносится с теорией, по которой размеры самой черной дыры еще на порядок меньше.

Ошибкой было бы считать, что проведенный эксперимент произошел лишь благодаря чудесному совпадению. Предсказать такие внегалактические затмения очень сложно, но астрономы совершенно осознано, выбрав объект, дожидались случая. Только проведя целую серию наблюдений, они, в конце концов, поймали свою черную кошку. АБ

Относительность абсолютна?

На cессии Американского физического общества, состоявшейся во флоридском городе Джексонвилле, были представлены предварительные итоги работы космической лаборатории Gravity Probe B, отправленной в околоземное пространство с целью проверки некоторых предсказаний общей теории относительности (ОТО).

Эксперимент, реализованный на спутнике Gravity Probe B, был предложен американскими физиками еще в 1959 году. Через пять лет его включили в планы NASA, которое тогда же выделило средства. Однако разработка и изготовление соответствующей аппаратуры оказались чрезвычайно трудным делом и потому растянулись на четыре десятилетия. 20 апреля 2004 года спутник был выведен на полярную орбиту высотой 640 км, после чего его аппаратура еще четыре месяца проходила тестирование и калибровку. Сам эксперимент начался в августе и продолжался около года. Сателлит перестал посылать на Землю данные в сентябре 2005-го, когда истощились запасы жидкого гелия, который использовался для охлаждения аппаратуры. Общий объем информации, которую Gravity Probe B отправил на Землю, превысил один терабайт, а реализация этого проекта в сумме обошлась в 760 миллионов долларов.

На спутнике Gravity Probe B были установлены четыре гироскопа, изготовленных с исключительной точностью и раскрученных примерно до 4 тысяч оборотов в минуту. Их оси с помощью бортового телескопа были направлены на звезду HR 8703 в созвездии Пегаса. Если бы движение гироскопов строго подчинялось ньютоновской механике, они должны были бы сохранять исходную ориентацию на протяжении всего эксперимента. Однако общая теория относительности вносит в этот прогноз определенные поправки. Из ее уравнений вытекает, что оси гироскопов должны претерпевать прецессию вокруг направления на опорную звезду, вызванную двумя различными релятивистскими эффектами. Расчеты показывают, что каждая ось должна отклониться от направления на звезду на 6,606 дуговых секунд в плоскости орбиты спутника и всего на 0,039 дуговой секунды в перпендикулярной ей плоскости земного экватора. Первое смещение вызвано искривлением метрики пространства-времени гравитационным полем Земли (это так называемый геодезический эффект), второе же является следствием добавки, обусловленной земным вращением (эффект увлечения системы отсчета).

Полученные со спутника данные показывают, что предсказания ОТО по части геодезического эффекта выполняются с точностью до 1%. Отклонение, вызванное увлечением системы отсчета, пока что полностью не промерено, так что этот вопрос остается открытым. Ожидается, что окончательные результаты эксперимента Gravity Probe B будут объявлены в декабре этого года. Ученые надеются, что после завершения обработки собранной информации предсказания ОТО относительно обоих эффектов подтвердятся с точностью порядка сотых долей процента. АЛ

Кто открыл кольца?

Английский астроном и специалист по космическим технологиям Стюарт Эйвс (Stuart Eves) усомнился в достоверности общеизвестной даты первого наблюдения колец Урана. По современным данным, седьмая планета Солнечной системы окружена тринадцатью разреженными и чрезвычайно тонкими кольцами, состоящими из пылевых частиц и фрагментов поперечником до десяти метров. Ближайшее к планете кольцо расположено в 38 тысячах километров от ее центра, а внешнее отстоит в два с половиной раза дальше. Ширина третьего с внешнего края кольца Эпсилон составляет от 20 до 96 километров, все прочие значительно уже (возможно, за исключением внутреннего кольца, ширина которого до сих пор под вопросом). Девять колец были идентифицированы в марте 1977 года на снимках телескопа американской летающей обсерватории имени Койпера. Два кольца в 1986-м обнаружил космический зонд Вояджер-2, и еще два были выявлены в 2003 году с помощью орбитального телескопа Хаббла.

Астрономы замечали Уран с конца XVII столетия, однако ошибочно принимали за звезду. Его первооткрывателем считается знаменитый английский астроном Уильям Гершель, который 13 марта 1781 года наблюдал планету в свой семифутовый телескоп, но сначала счел кометой. Позднее тот же Гершель и Пьер-Симон Лаплас доказали, что новое небесное тело обращается вокруг Солнца практически по круговой орбите и потому может быть только планетой.

В 1797 году Гершель известил лондонское Королевское общество о новых наблюдениях Урана. В этой работе он указал, что планету окружает очень тусклое красноватое кольцо, лежащее в плоскости ее экватора. Однако в дальнейшем ни один астроном не смог подтвердить эту информацию, и сообщение Гершеля сочли простой ошибкой. Стюарт Эйвс считает, что статья Гершеля содержит вполне точные данные о кольце Эпсилон, включая даже его цвет. Он полагает, что Гершелю посчастливилось навести свой телескоп на Уран как раз тогда, когда условия для наблюдения этого кольца были оптимальны. По его мнению, в дальнейшем яркость кольца могла уменьшиться (что, как недавно было доказано, происходит с кольцами Сатурна) и потому другие астрономы его уже не увидели. АЛ

Низкие пороги

Первый поляритонный лазер, работающий при комнатной температуре, удалось изготовить физикам из Саутгемптонского университета в Великобритании и Федеральной политехнической школы Лозанны, Швейцария. Порог генерации у нового лазера на порядок меньше, чем у лучших полупроводниковых аналогов, что делает заманчивым его использование в оптических чипах, устройствах хранения данных и других приложениях, где требуется лишь слабое излучение.

Если экситоны, которые похожи на атомы из электрона и дырки, для полупроводников объекты привычные, то более сложные квазичастицы поляритоны, состоящие из экситона и тесно связанного с ним фотона, пока еще штука довольно экзотическая. Поляритоны – это нечто среднее между светом и веществом. Их уже научились использовать в лазерах, заставляя пару поляритонов излучать фотон при взаимодействии друг с другом. Причем, поскольку поляритоны уже наполовину свет, поляритонный лазер начинает излучать при значительно меньших энергиях возбуждения. В обычном полупроводниковом лазере эта энергия уходит на «заброс» достаточного для начала генерации количества электронов из валентной зоны в зону проводимости. А если необходимо излучение малой мощности, то его вынуждены получать, ослабляя более мощный луч. С таким бесполезным расходованием энергии, которое приводит лишь к нагреву системы, трудно смириться.

До сих пор нежные поляритонные лазеры работали лишь при низких температурах, что ставило крест на их коммерческом использовании. Новый лазер на основе нитрида галлия (GaN) может функционировать и при комнатной температуре, благодаря сравнительно большой энергии связи экситонов в этом полупроводнике. Лазер изготовлен из тонкого, в несколько сотен нанометров, слоя полупроводника, помещенного между двумя зеркалами. Толщина слоя выбрана так, чтобы зеркала образовывали резонатор для ультрафиолетовых фотонов – световой части поляритонов. Накачка такого лазера производится импульсом света, мощность которого может быть на порядок меньше, чем при накачке лучших лазеров на квантовых точках из нитридов индия и галлия.

Авторы считают, что мощность их лазера можно снизить еще больше, и кроме того, надеются с помощью такого резонатора получить при комнатной температуре поляритонный конденсат Бозе-Эйнштейна. Это удивительное состояние "вещества", сулящее множество различных приложений, уже наблюдали в других полупроводниках, но при очень низких температурах. К сожалению, с нитридом галлия довольно трудно работать, и пока ученые сосредоточены на совершенствовании своей технологии. ГА

Ветер дует – деревья качаются

Удивительный «реснитчатый» наногенератор удалось изготовить ученым из Технологического института Джорджии в Атланте. Генератор способен утилизировать энергию механических вибраций, ультразвуковых колебаний и даже пульсирующего тока крови достаточно эффективно, чтобы обеспечить питанием разнообразные наноустройства.

Исследователи использовали уникальные физические свойства оксида цинка, который одновременно является полупроводником и пьезоэлектриком. Из этого материала вырастили целый лес нановолокон с одинаковой высотой около микрона, которые покачиваются под действием внешних механических колебаний. При изгибе из-за пьезоэффекта на границах волокон образуются заряды разных знаков. Чтобы их снять и использовать, напротив волокон разместили «пилу» из заостренных, покрытых слоем платины электродов, выращенных на кремниевом проводнике. При случайном соприкосновении платинового электрода и полупроводниковой реснички в месте их контакта из оксида цинка образуется диод Шоттки, через который электроны стекают во внешнюю цепь. А поскольку таких ресничек очень много, в каждый момент времени то одни, то другие касаются соединенных параллельно платиновых контактов, и в сумме по цепи течет почти постоянный ток.

По оценкам авторов, такое сравнительно простое в изготовлении устройство способно генерировать до четырех ватт энергии на кубический сантиметр своего объема. А поскольку генератор сделан из нетоксичных материалов, его можно даже имплантировать в тело человека. ГА

Новости подготовили

Галактион Андреев

Александр Бумагин

Евгений Гордеев

Артем Захаров

Денис Зенкин

Евгений Золотов

Сергей Кириенко

Денис Коновальчик

Игорь Куксов

Алексей Левин

Алексей Носов

Иван Прохоров

Дмитрий Пустовалов

Дмитрий Шабанов

МикроФишки

Увлекшись противостоянием Intel и AMD, все уже, кажется, забыли об альтернативных x86-чипопроизводителях, и напрасно. Hewlett-Packard начинает производство компьютеров на базе процессора C7-D от VIA Technologies, а собирать эти машины будут в Китае. Необычный выбор поставщика процессоров объясняется несколькими причинами. C7-D недорог, потребляет всего 20 Вт (при тактовой частоте 1,5 ГГц) и что, видимо, самое важное – почин HP должен сыграть на патриотических чувствах китайцев. Хотя компания VIA базируется на Тайване, она активно сотрудничает с производителями компьютеров с материка, и эти машины продаются как имеющие "китайское сердце". ДП

***

Microsoft решила повременить с выпуском новой многообещающей технологии виртуализации, проходящей под кодовым названием Viridian и являющейся важным компонентом грядущей Windows Longhorn Server (WLS). Бета-версия Viridian появится лишь осенью, а не в первой половине текущего года, как было обещано. На сроки выхода серверной ОС эта отсрочка вроде бы не повлияет. Окончательная версия WLS должна быть готова до конца года, а максимум через три месяца, как рассчитывают в Редмонде, выйдет и релиз Viridian. По словам Майка Нейла (Mike Neil), старшего менеджера подразделения виртуализации Microsoft, одной из сильных сторон Viridian является масштабируемость (до 64 процессоров одновременно). Кроме того, в отличие от нынешнего продукта корпорации – Virtual Server 2005 R2 – Viridian будет выполняться не поверх Windows, а в hypervisor-режиме – "ближе к железу". Своей новой разработкой Microsoft надеется переломить ситуацию на рынке виртуализации, лидером которого сейчас выступает продукт VMWare. Возможно, ей это и удастся, если, конечно, конкуренты позволят. АН

***

Астронавт Базз Олдрин, второй человек, ступивший на поверхность Луны, намерен организовать лотерею, главным призом которой станет космический полет. Пока, правда, неясно, на каком аппарате и когда счастливчик достигнет неба. НЯ

***

Специалисты из флоридского Института Пойнтера пришли к интересным выводам: оказывается, сетевые публикации удостаиваются большего внимания читателей, чем бумажная пресса. В обществе бытует обратное мнение, но масштабное исследование EyeTrack07 показало, что онлайн-заметки прочитывает до конца около 77% респондентов, тогда как для обычных широкоформатных газет этот показатель составляет 62% (а для таблоидов вообще 57%). В исследовании участвовало около шестисот добровольцев, которые просматривали материалы в специальных очках с видеокамерами, отслеживающими направление взгляда. Получены и другие любопытные результаты. Например, в бумажных публикациях читатели в первую очередь смотрят на большие фотографии (особенно не студийные, а "живые", репортажные) и крупные заголовки, которые привлекают непропорционально больше внимания, чем мелкие картинки и надписи. В онлайне же взгляд сначала устремляется к тому, что куда-нибудь ведет, – навигационным панелям и разнообразным баннерам. АЗ

Назад Дальше