Самой, пожалуй, удивительной особенностью ионофоров оказалась их способность к избирательному транспорту ионов. Если для грамицидина все равно, какие ионы проводить через мембрану — калия или натрия, то валиномицин в этом отношении оказался совершенно уникальным (чем и привлёк к себе пристальное внимание). Этот ионофор может проводить в 10 тыс. раз (!) больше ионов калия, чем натрия. А в искусственных мембранах, которые в обычных условиях одинаково непроницаемы для ионов этих металлов, валиномицин способствует переносу 100 тыс. ионов калия на один ион натрия. Вот так работает этот «бублик».
Природа, однако, игнорировала такие «бублики» для пропуска ионов через мембраны. Она пошла по пути использования особых канальных белков, которые образуют в мембранах проходы для ионов. Тем не менее исследование ионофоров представляет исключительный интерес, так как позволяет изучить влияние различных катионов, в особенности натрия и калия, на внутриклеточные процессы.
Ионофоры нашли применение в химической технологии для извлечения и разделения редких металлов, и в приборостроении — для создания весьма чувствительных датчиков. Электроды, изготовленные на основе валиномицина, -используются в медико-биологических исследованиях для определения, например, уровня калия в крови или в клетках. С помощью таких приспособлений можно влиять на деятельность ферментов, регулировать величину электрического мембранного потенциала, воздействовать на внутриклеточное осмотическое давление — и тем самым изменять проницаемость вещёств. Высокая биологическая активность ионофоров даёт возможность применять их в качестве лекарственных вещёств. Так, некоторые из них оказались эффективным средством выведения вредных металлов из организма (мы говорили об этом выше). А валиномицин к тому же способен снижать внутриглазное давление при глаукоме.
Остаётся добавить, что ученики и последователи Шемякина академик Ю. А. Овчинников и член-корреспондент АН СССР В. Т. Иванов продолжили дело своего учителя. Они детально исследовали валиномицин и другие ионофоры, такие как грамицидин и антаманид, подавляющий действие сильнейшего яда бледной поганки. За работы в области ионного транспорта через мембраны эти учёные в 1978 году были удостоены Ленинской премии.
Насос, который не смастерил бы и Левша
Теперь настало время вспомнить о том, почему ионы натрия и калия действуют по разные стороны клетки и чем интересна разность потенциалов, возникающая в растворах организма.
Ионы калия находятся преимущественно внутри клеток, а ионы натрия — во внеклеточном пространстве. Именно этот факт представляет собой одно из удивительнейших и не совсем пока объяснённых феноменов жизни. Казалось бы, все должно было бы быть наоборот: ведь ион натрия почти в 1,5 раза меньше иона калия, он легче проникает через мембраны и, следовательно, в самой клетке его должно было бы быть больше, чем неповоротливых ионов калия. Однако ионы натрия легче притягивают к себе молекулы воды, образуя вокруг себя толстую гидратную оболочку, препятствующую проходу через мембрану. Собственно говоря, поэтому и считают, что натрий способен удерживать воду. Вот почему издавна солдат в летних походах, чтобы уменьшить жажду, кормили селёдкой. Сегодня по этой же причине в горячих цехах рабочих обеспечивают подсоленной водой.
Видимо, поэтому же клетка стремится изгнать из себя натрий,— чтобы в ней не накапливалась вода и не происходил бы осмотический шок. В крови, например в эритроцитах, калия больше, чем натрия, почти в 15 раз, тогда как в плазме его в 20 раз меньше. Лишь после гибели организма внутри и вне клеток устанавливается величина ионов калия и натрия, соответствующая их коэффициентам диффузии. Но зачем же необходимо различие в этих ионах? Для создания разности потенциалов, как известно, способствующей перемещёнию зарядов.
Удивительная и даже где-то противоестественная на первый взгляд способность живого организма регулировать потоки калиевых и натриевых ионов породила много толков о механизме этого процесса. Считали даже, что дело в особых свойствах внутриклеточной воды, но постепенно многие предположения отпали. Сегодня все многообразие этого явления рассматривается в виде модели, которая получила название ионного, или натриевого насоса. Это очень точное название живого устройства, которое «перекачивает» ионы «против течения», препятствуя градиенту концентрации.
Первым, кто сообщил о существовании разности электрических потенциалов в организме и усиленно изучал его электрическую активность, был известный немецкий физиолог прошлого века Э. Дюбуа-Реймон. Его излюбленным «инструментом» в этом деле была обыкновенная лягушечья кожа. Именно она является прекрасным пособием при изучении как биологических мембран, так и натриевых насосов.
Судите сами. Если поместить кожу лягушки в раствор поваренной соли, то окажется, что она способна перекачивать ионы со стороны своей наружной поверхности по направлению к внутренней. Этот процесс может продолжаться даже тогда, когда концентрация соли в растворе с внутренней стороны кожи станет в 10 тыс. раз больше, чем с наружной. Естественно, что лягушечья кожа гораздо сложнее, чем просто мембрана, но она представляет собой удобную модель для экспериментов. Исследования ионных насосов проводятся на самых разных органах животных, таких, как желчный пузырь золотых рыбок, мочевой пузырь жаб, нервные волокна кальмаров и крабов... Транспорт ионов при помощи натриевого насоса назвали активным.
Как мы знаем, для действия любой машины нужна энергия. Что же движет нашим насосом?
В течение многих лет учёные не могли подобрать ключи к энергетическому механизму натрий-калиевого насоса. Он оставался вещью в себе, как любят сейчас говорить кибернетики,— «черным ящиком». А между тем ящик этот открывался довольно просто: источником энергии для его работы служит тот же аденозинтрифосфат — АТФ.
Как полагают, живой натриевый насос представляет собой фермент, расщепляющий АТФ, который встроен в саму мембрану (подобно самым совершенным техническим агрегатам, где насос и двигатель скомпонованы в единую систему — моноблок). Такая машина запускается в работу при повышении концентрации натрия внутри клетки или калия вне её
Остаётся добавить, что действие этого фермента, называемого натрий-калий зависимая АТФаза, подавляете» различными ядами, которые тормозят и работу натриевого насоса. Это обстоятельство, собственно говоря, позволило сделать выводы, что именно АТФаза является генератором энергии нашего насоса.
Коль у нас пошли такие индустриальные, что ли, аналогии, то ещё заметим, что из натриевого насоса можно сделать генератор по типу такого, какой имеется в гидроэлектростанции, заставив его вращаться от потока ионов. В самом деле, экспериментаторы доказали, что если пропускать ионы натрия и калия по градиенту концентрации, а не против, как это имеет место в живой клетке, то будет происходить синтез АТФ. Не сулит ли это в перспективе создание ультрамикрогенераторов для каких-либо бионических устройств, имитирующих, скажем, человеческий мозг?
Остановимся на одном типе натриевого насоса, который встречается лишь у галобактерий — микроорганизмов, обитающих в очень солёных водоёмах. Они могут развиваться только в воде с содержанием хлористого натрия не менее 12 %. Всякое понижение концентрации солей для них гибельно (начинает возникать осмотический шок). Поэтому-то впервые они были обнаружены именно в испарительных бассейнах, из которых добывают соль. У галобактерий натриевый насос работает, помимо всего прочего, за счёт световой энергии, поскольку часто им не хватает энергии окисления, энергии дыхания. Для этого служит специальный белок — бактериородопсин.
Родопсин, или зрительный пурпур,— это светочувствительный сложный белок, который заключён в сетчатке глаза к качестве зрительного пигмента палочковых клеток. Поглощая квант света, родопсин распадается, вызывая возбуждение зрительного нерва. В темноте же он синтезируется вновь. Так вот, аналогичный белок, обнаруженный в галобактериях, назвали бактериородопсином. У них ро-. допсин служит дополнительным насосом, работающим от световых квантов. Сложную структуру и этого белка удалось расшифровать коллективу исследователей под руководством академика Ю. А. Овчинникова.
И опять польза от соли, которую мы потребляем с пищей: она способствует созданию определённой концентрации ионов натрия в плазме крови, то есть во внеклеточном пространстве, если за клетки принимать эритроциты. И вот почему кровь соленая... Разность же электрохимических потенциалов, возникшая благодаря ионам натрия, является источником энергии для доставки питательных вещёств клетке, что и обеспечивается натриевым насосом.
Нервы — живые провода
Разделённые мембранами ионы калия и натрия становятся главными исполнителями ещё одного удивительного действа — передачи нервного импульса. Характерно, что природа для распространения сигналов пользуется теми же средствами, что и человек,— вернее, мы скопировали у природы способ электрической передачи информации. Единственное различие здесь, пожалуй, в том, что природа прибегает одновременно и к услугам химии. Иными словами, передача нервного импульса (сигнала) происходит при помощи разности потенциалов, создаваемой ионами.
Предположение о химической природе нервного возбуждения было высказано тем же Дюбуа-Реймоном ещё в 1877 году; однако его подтверждение — уже достижение современного естествознания.
Как известно, передача нервного раздражения происходит благодаря специальным нервным клеткам — нейронам. Их особенностью является то, что они имеют многочисленные отростки разных размеров, один из которых, самый длинный, называется аксоном и служит проводником сигналов для органа, с которым соединяется. Аксон представляет собой нечто вроде изолированного телеграфного кабеля. Впрочем, сравнение это несколько условно; аксон похож скорее на трубу, в которой находится жидкость, и сам он погружён в жидкость. Обе эти жидкости — и наружная, и внутренняя — хорошо проводят электрический ток, ибо содержат растворённые соли.
И здесь, как и во всякой живой клетке, мы опять встречаемся со знакомой картиной. В жидкости, омывающей аксон, содержатся ионы натрия и хлора; во внутренней жидкости — катионы калия и органические анионы. Разумеется, такая конструкция проводника уступает проволочному кабелю в электропроводности (примерно 100 м/с против почти мгновенной у медного провода). Но для данных целей этого, видимо, достаточно, ибо природа пошла несколько иным путём: у животных, которые должны ответить мгновенной двигательной реакцией на те или иные опасные ситуации (например, реактивное движение кальмара), развились гигантские аксоны с большим поперечным сечением для быстрой передачи импульса. Мы не напрасно упомянули о кальмарах. Для электрофизиологических экспериментов именно их аксоны являются идеальными объектами; при этом выводы, полученные при исследовании, можно смело распространить и на все другие нервные волокна.
Счастливой находкой такого замечательного объекта для выяснения природы нервного импульса наука обязана английским исследователям А. Ходжкину и Э. Хаксли, работавшим в Морской биологической лаборатории в Плимуте.
Логично предположить, что у очень крупных кальмаров должны быть невиданных размеров аксоны. А такие кальмары, или, как их называют, спруты, многократно описанные в приключенческих книгах, действительно существуют, и их тела могут достигать десятков метров. Одни глаза у таких чудовищ величиной с тарелку, можно представить, какие же у них шупальца! Но, увы, такие экземпляры встречаются крайне редко, и вряд ли их можно поймать да ещё невредимыми доставить к столу экспериментатора. Физиологи для своих исследований применяют аксоны небольших кальмаров с полуметровыми щупальцами. Зато одиночное нервное волокно у них толще, чем у позвоночных животных, чуть ли не в 1000 раз. Вот такой аксон и называют гигантским. В него можно вводить микроэлектроды и замерять различные характеристики электрического тока.
Электричество внутри нас
Начав работу в конце 30-х годов, Ходжкин и Хаксли за свои классические исследования нервных клеток в 1963 году получили Нобелевскую премёю. Они детально изучили события, с которыми связано прохождение электрического импульса по нервному волокну, выявили их зависимость от концентрации ионов калия и натрия. И установили следующее.
Когда нервная клетка находится в покое, внутри её наблюдается отрицательный заряд, возникающий не без участия мембраны. Его называют потенциалом покоя, и он равен -- 70 мВ. Как только клетка получает команду к действию — сигнал возбуждения, резко возрастает проводимость мембраны для ионов натрия и калия (что происходит в результате деятельности белков, образующих каналы для прохода). Потенциал покоя падает до нуля — как говорят, мембрана деполяризуется. Затем напряжение возрастает до положительной величины +50 мВ. Оно возникает потому, что при образовании каналов катионы натрия проникают в клетку, а катионы калия, наоборот, выходят наружу, правда, с некоторым запозданием. Изменение отношений их концентраций и приводит к перемене знака потенциала. В этой тонкости и заключён весь смысл передачи нервного импульса. Это уже потенциал действия. Он длится 10 мс, из которых примерно 1 мс приходится на пиковый потенциал. Величина потенциала действия равна алгебраической сумме потенциала покоя и потенциала, образованного движением катионов натрия и калия: +50—(—70) = 120 мВ. Вот такие сигналы, словно точки и тире азбуки Морзе, управляют нашими действиями.
В течение многих лет физиологи пытаются изменить концентрации по обе стороны мембраны аксона, манипулируя различными вещёствами, но вывод остаётся один: натрий и калий в определённых концентрациях ответственны за образование потенциала покоя и действия. Впоследствии выяснили, что ионы этих металлов проходят через мембрану нерва по разным каналам. Наиболее убедительные доказательства этого были получены при использовании сильнейшего нервного яда — тетродотоксина, который содержится в органах рыбы-собаки. Любопытно, что один из её видов является деликатесом в Японии. Фугу — так японцы называют эту рыбу — бывает ежегодно причиной смертельного отравления десятков людей, но это не останавливает любителей полакомиться экзотическим блюдом. Собственно говоря, такой ядовитой рыбой и заинтересовались учёные, а потом уж был выделен чистый кристаллический препарат тетродотоксина, который и нашёл применение в исследовании ионной проводимости. Его высокая специфичность действия была использована для оценки числа натриевых каналов в мембране нервной клетки. Оно весьма невелико, всего несколько десятков на 1 мкм2.
Предполагается, что перемещёние в этом случае ионов натрия подчиняется обычным законам диффузии. Но такой вывод не относится к"ионам калия. Число калиевых каналов в мембране нерва значительно больше, и не исключено, что они транспортируются специальными переносчиками.
Значительное место отводится также металлам-братьям и в биохимических представлениях о мозговой деятельности. Известно, что память у нас бывает двух типов: кратковременная и длительная. Скажем, конспектируя, лекцию, мы запоминаем слова на несколько секунд непосредственно перед записью. Это память кратковременная. Длительной памятью мы пользуемся тогда, когда нужно что-нибудь запомнить надолго.
В настоящее время выдвигается гипотеза о том, что механизм кратковременной памяти имеет ионную природу. Известно, что ионные связи непрочны, способны к быстрому разрушению — потому-то и память «коротка». Здесь главную роль отводят соединениям калия и натрия, которые легко диссоциируют в растворах на ионы (а в организме реакции практически протекают именно в растворах). Длительную же память связывают с образованием более стабильных белковых структур.
И в заключёние этого раздела вот на чем хотелось бы сконцентрировать внимание читателя. Для нашего организма крайне важно поддержание постоянства внутренней среды и прежде всего кислотно-щелочного равновесия. В самом деле, и обмен вещёств вообще, и любая биохимическая реакция в частности протекают нормально только в определённых, строго сбалансированных условиях динамического равновесия — гомеостаза. Естественно, что все вещёства, попадающие в организм, так или иначе влияют на это состояние, но самыми важными здесь, как это установлено, являются натрий и калий.