Но вернёмся к красной волчанке. Строго говоря, под этим названием имеют в виду два патологических состояния организма: собственно красная волчанка — тяжёлое заболевание, нередко с неблагоприятным прогнозом, и волчаночноподобный лекарственный синдром, с которым бороться значительно легче.
В обоих случаях, как и при латиризме, наблюдаются различные поражения кожи и внутренних органов, обусловленные нарушением функции соединительной ткани — опять же из-за коллагенеза. Здесь тоже организм вырабатывает «не тот» коллаген. Но причины этого иные.
Подымовым было установлено, что собственно красная волчанка возникает под воздействием инсоляции — солнечного излучения. В связи с этим стало ясным: людям, предрасположенным к этому заболеванию, не только нельзя загорать, но следует всячески избегать прямого попадания солнечных лучей на кожу, в особенности на кожу лица.
Но от какого излучения защищаться? В каком диапазоне волн? Чем защищаться? Вот сколько вопросов сразу возникает.
При изучении секрета сальных желёз кожи в тех местах, где чаще всего наблюдается поражение, были обнаружены соединения, которые причислили к порфиринам. Эти вещества обладают фотодинамической активностью, то есть, поглощая световые лучи определённой длины волны, они способны окислять другие вещества. Этот факт довольно известен.
Так вот, в случае красной волчанки предполагается, что такой активный порфирин, накапливаясь в особых клеточных структурах — лизосомах (они содержат ферменты, способные расщеплять белки, нуклеиновые кислоты и полисахариды), разрушает их мембраны. Таким образом получается, что лизосомные ферменты «досрочно» высвобождаются и начинают разрушать клетки сальной желёзы. В результате такой незапрограммированной агрессии появляются различные остатки субстратов' помимо всего прочего, представляющие собой лиганды, легко образующие комплексы с ионами меди. При этом возникает знакомая нам картина блокирования меди в лизилокси-дазе со всеми вытекающими последствиями.
На основе этих представлений В. К. Подымов разработал и предложил специальную мазь «Фогем», предохраняющую кожу от лучей определённой длины волны, вызывающих заболевание.
И несколько слов о волчаночноподобном лекарственном синдроме. Эта лигандная патология возникает в связи с приёмом некоторых лекарств, в состав которых входят лиганды, также перехватывающие медь у лизи-локсидазы. В отличие от самой волчанки волчаночноподоб-ный синдром прекращается, когда перестают принимать нежелательные препараты.
В заключение ещё раз упомянем о В. К. Подымове. Член-корреспондент АН СССР Л. А. Пирузян охарактеризовал его как «яркого, нестандартно мыслящего исследователя, внёсшего большой вклад в развитие многих разделов биомедицины».
Подымов ушёл из жизни в 1980 году в возрасте всего лишь сорока двух лет. Видимо, предчувствуя свою кончину, последнюю статью, которая была опубликована уже после его смерти, он закончил следующими словами: «Изложив свои гипотетические воззрения на патогенез красной волчанки лишь в части, имеющей фактическое и литературное обоснование, и понимая, что для получения окончательных доказательств правильности этих воззрении у него может не хватить ни времени, ни сил, автор считает свою задачу выполненной в теоретической части. Эксперименты покажут...»
В биохимических процессах медь выполняет и другие важные, правда, пока не изученные до конца функции, связанные с действием ряда витаминов, таких, как В6 и С.
У взрослых здоровых людей дефицит меди не наблюдается даже в тех местностях, где имеется пониженное содержание этого элемента в окружающей среде. Наша суточная потребность в меди составляет 2—3 мг, что в несколько раз меньше, чем потребность в железе. Мы выше уже отмечали биологическую взаимосвязь железа и меди в организме. К этому стоит добавить, что при появлении дефицита железа изменяется и уровень меди. У доноров, например, многократно сдающих кровь, замечено повышение количественного содержания меди. Такую же зависимость обнаружили и при значительных кровопотерях. Эта особенность навела медиков на мысль, что при лечении заболеваний, связанных с недостаточностью железа, необходимо применять и препараты меди.
Совершенно необходима медь и растениям. Особую роль играет она также в процессе фотосинтеза, влияя на образование хлорофилла и препятствуя его разрушению. О хлорофилле и фотосинтезе наш следующий рассказ.
Маг магний
Магний не относится к металлам древности, но его природные соединения применяли издавна. Достаточно сказать, что этот элемент входит в состав почти 200 минералов, среди которых всем известные асбест, долмит, тальк, нефрит. Поделки из нефрита ценились высоко, особенно в средние века, когда свято верили в магическую и целебную силу камней. Вот, например, один из рецептов XII века: «Если кто-нибудь носит на пальце перстень с нефритом, это предохраняет от удара молнии. Если повесят его как талисман на шею, это предохранит от заболевания желудка».
Осмысленное применение солей магния в медицине следует, по-видимому, отнести к XVII веку. С этим связывают историю, которая приключилась засушливым летом 1618 года с английским пастухом Генри Уикером. Он пас стадо в окрестностях города Эпсома и в поисках хоть какой-нибудь лужи, из которой можно было бы напоить жаждущую скотину, набрёл на яму с водой. К его разочарованию, коровы воду пить не стали, так как она оказалась очень горькой. Зато незадачливый пастух стал первооткрывателем нового минерального источника, прославившегося затем на весь мир именно своей горькой солью.
В 1695 году доктор Неми Грю, прослышав о целебных свойствах эпсомского источника, выпарил пробу воды из него и получил соль, обладавшую горьким вкусом и слабительным действием. Далее было обнаружено, что, взаимодействуя с содой и поташом, эта соль образует белый рыхлый порошок. Точно такой же белый остаток получался и при прокаливании минерала, который издавна находили в гористых окрестностях греческого города Магнезии. Так белый порошок получил латинское название «магнезия альба» — белая магнезия. Это карбонат магния. В противоположность ему окись магния, например, раньше называлась жжёная магнезия, или «магнезия уста». А собственно соль эпсомского источника представляет собой гидрат сульфата магния. С тех далёких времён она так и называется — горькая, или английская соль. Ее по-прежнему применяют в качестве слабительного. Это действие основано на том, что стенки кишечника почти полностью непроницаемы для ионов магния, чем создаётся осмотический эффект, ведущий к задержке всасывания воды из кишечника.
Своими свойствами эпсомская соль привлекала не только врачей, но и химиков, хотя лет 200—300 назад определённой разницы между теми и другими ещё не было. Так или иначе, но было установлено, что эпсомская соль могла быть получена и искусственно — при добавлении соляной кислоты к маточному раствору, оставшемуся после очистки морской соли. Таким образом её приготовляли в Портсмуте.
Собственно магний в чистом виде впервые был получен в 1808 году в результате длительных и чрезвычайно напряжённых экспериментов знаменитого английского химика Гемфри Дэви с большой вольтовой батареей. В процессе электролиза магнезии он выделил незначительное количество относительно чистого металла, который справедливее было бы назвать «магнезиум». Но это название можно было спутать со словом «магнезиум», которым обозначали марганец. Поэтому Дэви назвал новый металл «магниум»...
Если в порфирин попасть магнием
Магния на Земле очень много. По распространённости в земной коре он занимает 8-е место, а его кларк равен 1,87, то есть в 2,5 раза меньше, чем кларк железа. Зато если взять средний химический состав живого вещёства, то окажется, что магния в нем содержится 0,04 %, а железа в 4 раза меньше. Особенно много магния в виде соединений находится в морской воде. Здесь он занимает третье место после хлора и натрия. Концентрация магния в воде Мирового океана составляет 1,35 г/л, а общее его количество здесь оценивается в 2,1 • 1О15.т.
Человеческий кларк магния — 0,027, а содержание его в нашем организме не превышает 20 г.
Приведённые цифры лишний раз свидетельствуют: наиболее распространённые в природе металлы являются и важнейшими для живых организмов. Что касается магния, то вряд ли будет преувеличением назвать его главным металлом жизни.
Помните, у нас шёл разговор об.ионах металлов, которые могут занимать вакантные места в порфириновых кольцах? Так вот, если в порфирин внедряется магний, то получается структурная основа молекулы... хлорофилла, того самого вещества, которое придаёт растениям зелёный цвет. Совсем, казалось бы, несущественная замена железа на магний — и вот красное превращается в зеленое.
Самой, пожалуй, важнейшей особенностью магний-порфиринового комплекса, в противоположность аналогичным соединениям железа, является то, что он активен лишь в возбуждённом состоянии. Этим различием и воспользовалась природа, разделив функции железо- и маг-ний-порфиринов. Первые были приспособлены для переноса кислорода, вторые — для превращения энергии1 света в химическую энергию, которая приводит в действие сложнейший механизм фотосинтеза растений. А это, как известно, важнейший процесс живой природы.
Итак, хлорофилл. Впервые такое название (от греческого «хлорос» — зелёный и «филлон» — лист) было дано в 1817 году французскими химиками-фармацевтами Ж. Пельтье и Ж. Каванту спиртовой вытяжке из зелёного листа. Учёные опубликовали исследование под названием «Заметка о зелёной материи листьев». Зелёный пигмент был открыт ими походя, случайно (а кто сказал, что открытия делаются планомерно?). Пельтье и Каванту больше' всего интересовали поиски новых лекарств из различных растений. Они прославились открытием таких препаратов, как стрихнин — сильнейший яд ; и возбудитель нервной деятельности и хинин — популярное средство лечения малярии, полученное ими из коры хинного дерева. Занимаясь лекарственными препаратами, Пельтье и Каванту не. придали особого значения открытию хлорофилла.
Человеком, который посвятил исследованию хлорофилла и фотосинтеза всю жизнь, был замечательный русский учёный Климент Аркадьевич Тимирязев. В конце 60-х — начале 70-х годов прошлого века он учился и работал за границей под руководством таких выдающихся учёных, как Кирхгоф, Бунзен, Гофмейстер, Клод Бернар, Бертло и Буссенго.
В 1871 году Тимирязев получил степень магистра, защитив диссертацию «Спектральный анализ хлорофилла». Именно в ней 28-летний учёный впервые обращает внимание на сходство между хлорофиллом итемом крови. И только более чем через четверть века—в 1897 году М. В. Ненцкий экспериментально доказал это положение.
Как и красный пигмент крови, зелёный пигмент растений весьма заинтересовал учёный мир. В дальнейшем выяснилось, что Пельтье и Каванту получили не один какой-либо пигмент, а смесь нескольких природных красителей. Были предприняты попытки их разделения, в результате чего установили: хлорофилл, по существу, состоит из двух пигментов — зелёного и жёлтого. Именно последним и объясняется цвет осенних листьев. В 1864 году
попытку спектрального анализа хлорофилла предпринял известный английский физик Дж. Стоке, обнаруживший впигментах листьев два зелёных и два жёлтых красителя.
Собственно жёлтые пигменты нас не интересуют. Стоит лишь заметить, что они относятся к природным красителям — каротинам и тоже участвуют в процессе фотосинтеза. А вот на двух зелёных красителях остановимся подробнее
Разный, разный хлорофилл
Исследованием хлорофилла занимался и замечательный русский ботаник Михаил Семенович Цвет, прославившийся: более изобретением хроматографии— простого способа разделения смесей который в наше время стал совершенно незаменимым в химическом анализе. М. С. Цвет родился в Италии и немало скитался по свету в поисках пристанища для спокойной работы.; В конце концов он обосновался в России, на родине своего отца. Здесь им были сделаны главные его открытия, здесь он и. умер в 1919 году, не дожив до 47 лет. Созданный учёным аналитический метод, который он назвал хроматографией (от греческого «хрома» — цвет), позволил доказать наличие двух пигментов, составляющих хлорофилл.
М. С. Цвет пропускал раствор пигментов через стеклянную колонку, плотно набитую толчёным мелом. И разные пигменты, даже незначительно отличающиеся друг от друга, осаждались по-разному. Таким образом получался столбик, напоминающий шлагбаум тем, что был окрашен послойно. Метод, предложенный М. Цветом, позже получил развитие и ныне широко применяется в химическом анализе.
Случайно или нет, но примерно в это же время хлорофиллом занимался и немецкий учёный, ровесник Цвета Рихард Мартин Вильштеттер. Вместе со своим ближайшим учеником Артуром Штолем ему удалось получить кристаллический хлорофилл и определить его основные компоненты. Они установили, что этот пигмент является комплексом, содержащим магний. В 1913 году Вильштеттер и Штоль опубликовали фундаментальный труд «Исследования хлорофилла». Затем Вильштеттер увлёкся и другими растительными пигментами. В 1915 году за исследования хлорофилла и других пигментов ему присудили Нобелевскую премёю по химии.
Окончательную структуру хлорофилла установил уже знакомый нам Ханс Фишер в 1940 году.
Искусственный хлорофилл был получен ещё через 20 лет. Эта заслуга принадлежит коллективу американских учёных, возглавляемому известным химиком-органиком Робертом Бёрнсом Вудвортом. Недаром его называли непревзойдённым королём синтеза, человеком, «который лепит молекулы». В самом деле, 27-летний Вудворт дебютировал синтезом хинина, на который было затрачено чуть больше года. Что же, опять случайное совпадение? Пельтье и Каванту сначала открыли хинин, а потом хлорофилл. Вудворт сначала синтезировал хинин, а потом хлорофилл. В 1951 году Вудворт сообщает, что им проведены синтезы холестерина — одного из стеринов, с которым связано нарушение обмена вещёств и отложение бляшек на стенках сосудов, а также кортизона — лекарства против различных воспалительных процессов. Далее следуют синтезы других соединений., среди которых известный нам стрихнин, а также резерпин — средство лечения психических заболеваний и гипертонии. И наконец, синтез хлорофилла, на который было затрачено 4 года. Отметим попутно, что Вудворт расшифровал к тому же и структуры молекул террамицина, ауромицина, биомицина, стрептомицина, тетрациклина. Значение этих антибиотиков в медицине общеизвестно. Все это вкупе с последующими достижениями (о которых мы ещё будем говорить) в 1965 году принесло Вудворту Нобелевскую премёю.
Итак, было обнаружено, что хлорофилл состоит из двух компонентов, которые получили название а и b, a также (и это для нашего рассказа самое главное) что в центре его порфиринового кольца заключён магний.
Вообще-то говоря, типов хлорофилла несколько, и они находятся в растительных клетках в специальных органеллах, или пластидах — хлоропластах. У бактерий, способных осуществлять фотосинтез, хлорофилл заключён в хроматофорах. У растений и у водорослей обычно встречается два типа хлорофилла — а и Ь. Впрочем, у диатомовых и бурых водорослей обнаружен вместо хлорофилла а хлорофилл с, а у красных водорослей — хлорофилл d.
Хлорофилл же, заключённый в фотосинтезирующих бактериях, не мудрствуя лукаво, назвали бактериохлорофиллом. Все эти виды зелёных пигментов отличаются друг от друга незначительными деталями, которые для нас не играют роли. На рис. 9 показано, как выглядит молекула хлорофилла а.
Длинный хвост, присоединённый к магний-порфириновому комплексу, это углеродная фитольная цепь, позволяющая молекуле связываться с жироподобными вещёствами.
Земной посредник космоса
Все мы дети Солнца. Это не только прочно установленная, но и твёрдо усвоенная всеми нами истина. В самом деле, наиболее значительное влияние мы испытываем со стороны космических явлений, из которых самое сильное — световое излучение, а попросту солнечный свет, несущий потоки самых разнообразных частиц.