Из жизни пчёл - Карл Фриш 9 стр.


Место, где можно найти нектар, нередко выделяется бросающейся в глаза цветной меткой — нектарным указателем. Каждому знакомо желтое кольцо в голубом цветке незабудки, в центр которого пчела, чтобы достать нектар, должна ввести свой хоботок; у примулы (рис. 52) светло-желтые цветки имеют темно-желтые нектарные указатели. Таких примеров множество. Если окраска всего цветка играет роль вывески, издали привлекающей посетителя, то нектарные указатели направляют его к «ресторану» более приятным способом, чем наши прозаические надписи со стрелкой.

Рис. 51. Цветки желтушника (а), рапса (б) и горчицы посевной (в), сфотографированные в желтом свете (слева) и в ультрафиолетовых лучах (справа). Различная степень отражения ультрафиолета создает для пчелиного глаза различную окраску цветков, которые мы видим одинаково желтыми. (По Даумеру.)

Рис. 52. Цветок примулы (Primula acaulis) с нектарным указателем.

Цветовая метка очень красноречива благодаря тому, что нектарные указатели почти всегда имеют более сильный, а часто даже совершенно иной запах, чем окружающие их части цветка. Оптический нектарный указатель является для пчел одновременно и «ароматическим указателем». Мы не замечаем этого, так как при втягивании воздуха носом все пахучие вещества перемешиваются. Для пчелы, своими усиками воспринимающей запахи «пространственно» (см. стр. 71), такие ароматические отметины имеют особое значение.

Тот, кто мог бы увидеть мир глазами пчелы, был бы поражен, открыв вдвое больше цветков с великолепными нектарными указателями, чем их в состоянии обнаружить наш глаз, не воспринимающий ультрафиолета. О том, что видит пчела, мы можем получить представление, сфотографировав цветки через три фильтра, светопроницаемость которых соответствует трем основным воспринимаемым пчелами цветам.

На рис. 53 изображены однотонно желтые для нас цветки стелющейся лапчатки (Potentilla reptans). Светлая окраска лепестков на снимке, сделанном через желтый фильтр, показывает, что желтые лучи отражаются сильно и равномерно. Их темная окраска на том же рисунке вверху справа (синий фильтр) означает, что синие лучи поглощаются. Фотографирование через ультрафиолетовый фильтр (внизу) открывает поразительную вещь — невидимый нам нектарный указатель. Края лепестков отражают ультрафиолет и поэтому имеют окраску, состоящую из смеси желтого и фиолетового цветов,— «пчелиный пурпурный» цвет. Внутренняя часть цветка поглощает ультрафиолет, так что для пчелиного глаза чисто-желтый нектарный указатель выделяется на пурпурном фоне. В значении этих скрытых от нас признаков можно убедиться, проведя опыты с пчелами.

Рис. 53. Цветки и листья стелющейся лапчатки (Potentilla reptans), сфотографированные в желтом (а), синем (б) и ультрафиолетовом (в) свете. Цветки, которые кажутся нам чисто-желтыми, сильно отражают желтые лучи и не отражают синих; только крайние участки лепестков сильно отражают ультрафиолетовые лучи. Так возникает невидимый для нас нектарный указатель — ярко-желтый в «пурпурном» обрамлении. В результате слабого равномерного отражения лучей в трех основных для пчел частях спектра листья кажутся пчелам бесцветными. Помещенная внизу шкала градаций серого цвета служит для фотометрической оценки степени отражения. (По Даумеру.)

На рис. 53 можно заметить еще одно обстоятельство, придающее особенно глубокий смысл всему великолепию цветков. Вместе с цветками сфотографированы и зеленые листья. Они отражают лучи трех основных для пчелы цветов довольно равномерно и только в районе желтого — несколько больше. Так же обстоит дело с листьями всех растений; поэтому листву, кажущуюся нам зеленой, пчелы видят почти бесцветной — серой с бледно-желтоватым оттенком. Но тем сильнее на этом блеклом фоне выделяются пестрые цветы.

Любитель природы, конечно, не перестанет радоваться цветам, даже если узнает, что они предназначены вовсе не для его глаз.

Рис. 54. Глаз человека. С — сетчатка; ЗН — зрительный нерв. (Объяснение в тексте.)

Глаз человека можно сравнить с фотоаппаратом. Отверстию в передней стенке камеры соответствует в человеческом глазу зрачок. Так же как фотограф при ярком свете уменьшает диафрагму, чтобы ослабить световой поток, так и радужная оболочка глаза, сжимаясь, уменьшает зрачок и защищает внутренность глаза от чрезмерно яркого света. Линза фотоаппарата соответствует хрусталику человеческого глаза; и форма, и назначение их одинаковы. Когда мы смотрим на отдаленную точку А (рис. 54), излучающую свет во всех направлениях, хрусталик собирает падающие на него через зрачок лучи и соединяет их в одной точке на дне глаза (а). Лучи от другой точки, B, расположенной выше А, хрусталик тоже соберет на глазном дне в одном месте, но несколько ниже (b), а лучи от третьей точки, C, расположенной ниже А, соберутся на задней стенке глаза в точке c, лежащей выше а. Всякий предмет, находящийся в поле нашего зрения, мы можем представить себе состоящим из множества отдельных точек (которые сами светятся или отражают падающий на них свет), и к любым из них применимо все то, что мы вывели для наших трех точек А, В и С. Таким образом, хрусталик отбрасывает на заднюю стенку глаза маленькое, перевернутое, но точное изображение рассматриваемого предмета, совершенно так же, как линза фотоаппарата — на фотопластинку.

Существенная разница между фотокамерой и нашим глазом состоит в использовании полученного изображения. В камере на пластинке запечатлевается и как бы консервируется изображение, полученное в данный момент времени. В нашем глазу место фотопластинки занимает сетчатка, или сетчатая оболочка, с помощью которой мы воспринимаем изображение со всеми его деталями, причем это изображение непрерывно изменяется.

Значительную часть сетчатки составляет тончайшая мозаика из палочковидных элементов (они настолько малы, что на отрезке в 1 миллиметр поместились бы многие сотни их), и все они связаны нервными волокнами с головным мозгом. В совокупности эти волокна образуют толстый зрительный нерв, идущий от глаза к мозгу. Информация о каждой светящейся точке, изображение которой падает на сетчатку, передается по нервным волокнам в головной мозг, и только там, а не на самой сетчатке, возникает восприятие: сигналы от каждой отдельной точки, вспыхнувшей в ночной темноте, или от бесконечного множества точек, при свете дня заполняющих все поле нашего зрения, взаимодействуют между собой, порождая единый зрительный образ. Иногда задавали вопрос: почему мир не представляется нам вверх ногами, если на нашей сетчатке все отображается в перевернутом виде? Этот вопрос лишен смысла уже потому, что образ видимого осознается у нас не сетчаткой, а головным мозгом, в котором все частицы изображения уже давно успели распределиться по-иному, в соответствии с ходом нервных волокон.

Глаз пчелы, так же как и глаза других насекомых, не имеет ни зрачка, ни радужной оболочки, ни хрусталика. Сетчатку на дне глаза можно сравнить с сетчаткой человека, но изображение на ней возникает по-иному. У пчелы очень выпуклые глаза расположены по бокам головы (см. рис. 15). Рассматривая их поверхность через сильную лупу, мы увидим, что она изящнейшим образом разделена на мелкие участки — фасетки, и поэтому такой орган зрения называется фасеточным глазом (рис. 55).

Таким образом, уже внешний вид глаза пчелы говорит о несходстве его по внутреннему устройству с человеческим. Более четко его структуру можно уяснить, осторожно вскрыв глаз (рис. 55 и 56). Разделенная на фасетки поверхность глаза состоит из хитина и служит внешним защитным слоем, соответствующим роговой оболочке нашего глаза (хитин, как панцирь, покрывает и все тело пчелы). К каждой фасетке этой роговицы примыкает кристально-прозрачное кеглевидное образование — кристаллический (хрустальный) конус (КК на рис. 55 и 56). Он собирает направленные прямо на него световые лучи и проводит их к палочкам сетчатки (П). Каждая фасетка с примыкающей к ней внутренней трубочкой и соответствующей палочкой сетчатки образует омматидий.

Рис. 55. Глаз пчелы (схема). Р — роговица; КК — кристаллический конус; П — палочки сетчатки; ЗН — зрительный нерв. Точки А, В и С в поле зрения соответствуют возникающим на сетчатке изображениям точек а, b и с. Изображение прямое.

Сложный глаз рабочей пчелы состоит примерно из 5000 плотно примыкающих друг к другу омматидиев, причем каждый из них — и это очень важно — расположен под небольшим углом к своим соседям, так что все они смотрят в разных направлениях. Каждая трубочка с боков одета в черную светонепроницаемую оболочку, как нога в чулок.

Еще раз вообразим в поле зрения глаза светящуюся точку (А, рис. 55), от которой идут лучи во всех направлениях. Эти лучи попадают на всю поверхность глаза, но только в том омматидии, который прямо направлен на светящуюся точку, луч света попадет через трубочку на палочку (а) сетчатки. В остальных омматидиях, на которые свет падает несколько косо, он будет поглощен их черными оболочками, прежде чем достигнет светочувствительных элементов сетчатки. Другая точка, В, расположенная выше, лежит по направлению омматидия, лежащего выше, а расположенная ниже точка С будет соответственно воспринята омматидием, лежащим ниже (см. рис. 55). Это относится и к бесчисленным другим точкам, на которые мы можем мысленно разделить предмет. Каждый омматидии как бы выхватывает из всего поля зрения небольшую частицу, лежащую по направлению его оси. Таким образом, как это следует непосредственно из рисунка, на сетчатке возникает изображение, но не перевернутое, как в глазу с хрусталиком, а прямое.

Рис. 56. Срез глаза пчелы. Р — роговица; КК — кристаллический конус; С — палочки сетчатки. В верхнем участке глаза при консервировании роговица несколько отслоилась от кристаллического конуса. (Фото А. Лангвальда.)

Это обстоятельство много раз обсуждалось, но само по себе оно не имеет существенного значения. Оно обусловлено тем, что у пчелы уже на поверхности глаза картина всего поля зрения распадается на мозаику из мельчайших частичек изображения, передающихся через отдельные омматидии палочкам сетчатки и отсюда — в мозг. В нашем же глазу хрусталик отбрасывает на сетчатку единое перевернутое изображение, которое разлагается палочками сетчатки на мозаику и передается в мозг. Соединить отдельные «камешки» мозаичного изображения в единый чувственный образ — это в обоих случаях уже задача мозга.

На рис. 55 создание изображения в фасеточном глазу показано в увеличенном и упрощенном виде. Как изящно в действительности примыкают друг к другу омматидии и насколько они многочисленны, можно видеть на рис. 56 — на микрофотографии среза, проходящего через глаз пчелы.

Рис. 57. Микрофотография изображения, возникающего на сетчатке глаза светлячка (120-кратное увеличение). Через окно видна церковь, на одном оконном стекле — наклеенная на него буква R из черной бумаги. (По С. Экснеру.)

К такому же выводу приводит и анатомическое исследование. Понятно, что сетчатка насекомого может зарегистрировать тем больше подробностей (то есть зрение может быть тем острее), чем больше имеется омматидиев. Это можно сравнить с мозаичной картиной, которая будет тем точнее изображать предмет во всех его подробностях, чем больше мозаичных камешков будет использовано для ее создания.

На рис. 58 глаз а не может воспринимать раздельно три точки, так как они оказываются в поле одного и того же омматидия, который соответствует одной палочке сетчатки. Глаз б может воспринимать их раздельно, так как в этом случае они попадают в поля разных омматидиев. Ясно, что, чем меньше угол зрения каждого отдельного омматидия, тем лучше способность глаза различать детали. Этот угол у глаза пчелы близок к одному градусу. Поэтому две точки, разделенные в поле зрения каким-то меньшим углом, не воспринимаются отдельно одна от другой. Зоркий человеческий глаз может воспринимать раздельно две точки, лежащие на расстоя[нии] всего лишь одной минуты дуги (1/60 градуса) друг от друга. Таким образом, острота зрения у пчелы должна быть во много раз меньше, чем у человека.

Рис. 58. Зависимость остроты зрения от числа омматидиев в глазу насекомого.

О том, как воспринимают пчелы форму предметов, можно расспросить их самих. Опыты с дрессировкой показали, что пчелы легко обучаются с большой уверенностью различать две формы цветков, изображенные на рис. 59. Однако их восприятие формы резко отлично от нашего. Для них наряду с формой фигуры огромное, даже решающее значение имеет такой признак, как степень ее расчленения на составные элементы. Пчелы воспринимают многообразие цветков благодаря сильной расчлененности венчиков.

Это может показаться странным. Но все становится более понятным, если мы вспомним, что органы зрения пчелы неподвижны. Пчела не может поворачивать глаза и направлять взгляд на заинтересовавший ее предмет. Все ее 10000 глазков (фасеток) прочно фиксированы на голове справа и слева и установлены на все направления (см. рис. 55). В полете впечатления, которые отдельные глазки получают от мелькающих мимо предметов, непрерывно и очень быстро сменяются.

Если в темном помещении в быстрой последовательности производить световые вспышки, то мы увидим мерцающий свет. Но если в течение одной секунды друг за другом следует более 20 вспышек, наш глаз уже не воспринимает их раздельно и создается впечатление непрерывной освещенности. Именно это явление широко используется в кинематографе, где эффект непрерывного движения создается в результате ежесекундной смены 22 — 25 кадров киноленты. Мы не замечаем, что через определенные доли секунды наступает затемнение, во время которого происходит смена изображений.

Назад Дальше