Анатомия Гаргантюа
Если мы знаем массу черной дыры и скорость ее вращения, то, воспользовавшись законами теории относительности, мы можем узнать и все остальные ее свойства: размер, силу гравитационного притяжения, насколько сильно ее горизонт событий вытянут центробежными силами в плоскости экватора, особенности гравитационного линзирования находящихся позади дыры объектов… Все что угодно.
Поразительная вещь, которой не найти аналогов в повседневной жизни. Представьте, что, зная мой вес и скорость ходьбы, вы могли бы узнать обо мне все: цвет глаз, длину носа, коэффициент интеллекта…
Джон Уилер (мой наставник, придумавший название «черная дыра») изрек по этому поводу фразу: «У черных дыр нет волос», — то есть нет каких-либо дополнительных, независимых свойств, помимо массы и скорости вращения. По-хорошему ему стоило сказать: «У черной дыры лишь два волоса, по которым можно узнать о ней все», но это звучит не столь хлестко, как его фраза, быстро ставшая крылатой33.
Как показано в фильме, знающий теорию относительности физик способен вывести из свойств планеты Миллер массу и скорость вращения Гаргантюа и, следовательно, узнать о ней все остальное. Разберемся, как это работает34.
Масса Гаргантюа
Планета Миллер (о которой я подробно расскажу в главе 17) находится настолько близко к Гаргантюа, насколько это возможно без того, чтобы планете угрожала гибель. Мы знаем об этом, поскольку экипаж, находясь там, тратит очень много «земного времени» — такое возможно лишь в предельной близости к Гаргантюа.
На столь малом расстоянии приливная гравитация черной дыры (см. главу 4) особенно сильна. Она растягивает планету Миллер в направлениях к Гаргантюа и от нее и сжимает «по бокам» (рис. 6.1).
Когда Кристофер Нолан сказал мне, какое замедление времени на планете Миллер ему нужно — один час там на семь земных лет, — я был ошарашен. Я полагал это невозможным, о чем и сказал Крису. «Это не обсуждается», — отрезал он. Что ж, не в первый и не в последний раз я отправился в раздумьях домой, сделал кое-какие расчеты и… нашел выход.
Я обнаружил, что если планета Миллер будет настолько близко к Гаргантюа, насколько это возможно без риска упасть в черную дыру36, и если скорость вращения Гаргантюа будет достаточно высокой, замедление «один час за семь лет» возможно. Но Гаргантюа должна вращаться чертовски быстро.
Для скорости вращения черных дыр есть предел. Если он будет превышен, горизонт событий исчезнет, оставив на виду у всей Вселенной обнаженную сингулярность. А это, по всей видимости, противоречит законам физики (см. главу 26).
Выяснилось, что для замедления, которое нужно Крису, Гаргантюа должна вращаться со скоростью, близкой к предельной, меньше ее примерно на одну стотриллионную долю37. В Кип-версии я по большей части исхожу из этого значения.
Экипаж «Эндюранс» мог бы измерить скорость вращения дыры непосредственно: наблюдая с большого расстояния, как робот ТАРС падает к Гаргантюа (рис. 6.2)38. Для стороннего наблюдателя ТАРС никогда не окажется за горизонтом событий (поскольку посылаемые им сигналы не смогут выйти наружу после пересечения горизонта). Вместо этого будет казаться, что падение ТАРСа замедлилось, как будто он завис над горизонтом. При этом завихряющееся пространство Гаргантюа будет кружить его вокруг черной дыры. При скорости вращения Гаргантюа, близкой к предельной, орбитальный период ТАРСа — с точки зрения стороннего наблюдателя — составит около одного часа.
Узнав массу и скорость вращения Гаргантюа, я использовал уравнения Эйнштейна, чтобы рассчитать ее анатомию. Так же как и в главе 5, здесь мы рассмотрим только внешнюю анатомию, отложив внутреннее строение (особенно сингулярность) Гаргантюа до глав 26 и 28.
В верхней части рис. 6.3 показана форма экваториальной плоскости Гаргантюа, если смотреть на нее из балка. Этот рисунок напоминает рис. 5.5, но, поскольку скорость вращения Гаргантюа гораздо ближе к предельной (одна стотриллионная, а не две тысячные, как на рис. 5.5), «горловина» у Гаргантюа намного длиннее. Она тянется далеко-далеко вниз, прежде чем достигает горизонта. Область возле горизонта, если смотреть на нее из балка, похожа на продолговатый цилиндр. Длина этого цилиндра составляет около двух окружностей горизонта, то есть два миллиарда километров.
Гравитация вблизи Гаргантюа настолько сильна, а пространство и время настолько искривлены, что свет (фотоны) может задерживаться на орбитах снаружи горизонта событий, снова и снова путешествуя вокруг дыры, прежде чем ее покинуть. Такие орбиты нестабильны в том смысле, что фотоны всегда, рано или поздно, их покидают. (В отличие от фотонов, попавших за горизонт, которые, напротив, уже никогда не выйдут наружу.)
Я называю такой задержавшийся на орбите свет «огненной оболочкой». Эта огненная оболочка играет важную роль в компьютерном моделировании (см. главу 8) для «Интерстеллар».
В случае невращающейся черной дыры огненная оболочка представляет собой сферу с окружностью в 1,5 раза больше, чем окружность горизонта. Свет путешествует по этой сфере огромными кругами (похожими на земные меридианы); часть его уходит в черную дыру, а часть — просачивается наружу, улетая прочь.