Кстати, именно с пружинами связан любопытный эпизод из истории второй мировой войны. Гитлеровская промышленность была отрезана от основных источников бериллиевого сырья. Мировая добыча этого ценного стратегического металла практически полностью находилась в руках США. И немцы пошли на хитрость. Они решили использовать нейтральную
Швейцарию для контрабандного ввоза бериллиевой бронзы: американские фирмы получили от швейцарских «часовщиков» заказ на такое ее количество, которого хватило бы на часовые пружины всему миру лет на пятьсот вперед.
Хитрость, правда, была разгадана, и этот заказ остался невыполненным. Но все же время от времени в новейших марках скорострельных авиационных пулеметов, поступавших на вооружение фашистской армии, появлялись пружины из бериллиевой бронзы.
Усталость - одно из «профессиональных заболеваний» многих металлов и сплавов, которые, не выдерживая переменных нагрузок, постепенно разрушаются. Добавка же в сталь даже небольшого количества бериллия «как рукой снимает» усталость. Если автомобильные рессоры из обычной углеродистой стали ломались уже после 800 - 850 тысяч толчков, то после введения в сталь «витамина Ве» рессоры выдерживали 14 миллионов толчков, не обнаруживая и следов усталости.
В отличие от стали, бериллиевая бронза не искрится при ударе о камень или металл, поэтому ее широко используют для изготовления инструмента, применяемого на взрывоопасных работах - в шахтах, на пороховых заводах, нефтебазах.
Бериллий существенно влияет на свойства магния. Так, присадка лишь 0,01% бериллия предотвращает возгорание магниевых сплавов при плавке и разливке (т. е. примерно при 700°С). Резко уменьшается при этом и коррозия сплавов - как на воздухе, так и в воде.
Большое будущее принадлежит, по-видимому, сплавам бериллия с литием. Союз этих двух легчайших металлов приведет, быть может, к созданию сплавов, не тонущих в воде.
Бериллий является и отличным раскислителем стали, правда, к сожалению, пока еще слишком дорогим (цена 1 килограмма бериллия в США составляет сейчас около 150 долларов, что значительно превышает стоимость тантала, ниобия, циркония, не говоря уже о таком сравнительно недорогом металле, как серебро).
Металлурги нашли бериллию еще одно важное применение. Насыщение этим металлом поверхности стальных изделий - «бериллизация» - значительно повышает их твердость, прочность, износостойкость.
Весьма благосклонны к бериллию рентгенотехники - ведь он лучше всех других устойчивых на воздухе металлов пропускает рентгеновские лучи. Сейчас из него во всем мире делают «окна» для рентгеновских трубок. Пропускная способность таких «окон» в 17 раз выше, чем алюминиевых, применявшихся ранее для этой цели.
Бериллий сыграл заметную роль в развитии учения о строении атома и его ядра. Еще в начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа-частицами, обнаружили так называемой «бериллиевое излучение» - очень слабое, но обладающее значительной проникающей силой: лучи проходили через слой свинца толщиной несколько сантиметров. Природу этого излучения установил в 1932 году англичанин Д. Чэдвик. Оказалось, что оно представляет собой поток электрически нейтральных частиц, масса которых примерно равна массе протона. Новые частицы были названы нейтронами.
Отсутствие электрического заряда позволяет нейтронам легко внедряться в ядра атомов других элементов. Это свойство сделало нейтрон эффективнейшим «снарядом» атомной артиллерии. Сейчас нейтронные пушки широко применяются для осуществления ядерных реакций.
Изучение атомной структуры бериллия показало, что для него характерно малое сечение захвата нейтронов и большая величина их рассеяния. Благодаря этому бериллий рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких значений, при которых цепные реакции протекают более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов. Прекрасно справляется он с ролью отражателя нейтронов, возвращает их в активную зону реактора, противодействует их утечке. Ему присуща также высокая радиационная стойкость, сохраняющаяся при очень больших температурах.
Все эти замечательные свойства делают бериллий одним из самых необходимых элементов атомной техники.
Несомненный интерес для науки представляет «звукопропускная» способность этого металла. В воздухе скорость звука составляет 330 метров в секунду, в воде - 145 метров в секунду. В бериллии же звук побивает все рекорды, преодолевая за секунду 12500 метров.
Многими ценными свойствами обладает окись бериллия. Высокая огнеупорность (температура плавления 2570°С), значительная химическая стойкость и большая теплопроводность позволяют использовать этот материал для футеровки индукционных печей, изготовления тиглей для плавки различных металлов и сплавов. Так, для выплавки бериллия в вакууме применяют тигли только из окиси бериллия, которая с ним абсолютно не взаимодействует. Этот окисел служит основным материалом для оболочек тепловыделяющих элементов (твэлов) атомных реакторов.
Теплоизоляционные свойства окиси бериллия, возможно, будут использованы и при исследовании глубинных слоев нашей планеты. Существует проект взятия проб из мантии Земли с глубин до 32 километров с помощью так называемой «атомной иглы», представляющей собой миниатюрный атомный реактор, который заключен в теплоизолирующий футляр из окиси бериллия.
...Сбылись пророческие слова замечательного ученого и мечтателя А. Е. Ферсмана. Совсем немного времени понадобилось бериллию, чтобы оправдать возлагаемые на него надежды. Из малоизвестного редкого элемента он превратился сегодня в один из важнейших металлов XX века.
H
Li
Be
B
С
Na
Mg
Al
Si
БОРЕЦ С УСТАЛОСТЬЮ
Проблемы алхимиков. - Истина в воде. - Вместо «философского камня». - Обошлось без фейерверка. - В пламени спички. - Водобоязнь. - В нижних слоях мантии. - «Горная кожа». - Какой способ лучше? - Нептун может спать спокойно. - Каждый вносит свой пай. - В тяжелых условиях. - На металлургическом поприще. - Ждать не придется. - «Спокойно, снимаю!» - Есть д%ла поважней. - В яичной скорлупе. - Ешьте персики. - Грозит инфаркт. - «Вам сына или дочь?» - По примеру коров. - Новый огнеупор. - Вклад Гриньяра. - Лучшая роль - впереди.
Одной из основных проблем, над которой бились «научные работники» средневековых алхимических лабораторий, были поиски пресловутого
«философского камня». С его помощью они надеялись найти тайну получения золота из «неблагородных» металлов.
Поиски велись в различных направлениях. Одни предлагали использовать для этой цели свинец, который требовалось нагреть до получения «красного льва» (т. е. до расплавления), а затем кипятить в кислом виноградном спирте. Другие считали, что самым подходящим сырьем для производства «философского камня» является моча животных. Третьи утверждали, что истина - в воде.
В конце XVIII века один из английских алхимиков, по-видимому, сторонник третьего направления, выпаривая воду, вытекающую из земли вблизи города Эпсом, получил вместо «философского камня» соль, обладающую горьким вкусом и слабительным действием. Спустя несколько лет выяснилось, что при взаимодействии с «постоянной щелочью» (так в те времена называли соду и поташ) эта соль образует белый легкий рыхлый порошок. Точно такой же порошок получался при прокаливании минерала, найденного в окрестностях греческого города Магнезии. За это сходство эпсомская соль была названа белой магнезией.
В 1808 году молодой английский ученый Гемфри Дэви, анализируя белую магнезию, получил новый элемент, который он назвал магнием. Торжества по случаю открытия нового элемента не сопровождались фейерверком, поскольку в те времена еще не было известно, что новорожденный обладает отличными пиротехническими свойствами.
Магний - очень легкий серебристо-белый металл. Он почти в 5 раз легче меди, в 4,5 раза легче железа; даже «крылатый» алюминий в 1,5 раза тяжелее магния. Температура плавления магния сравнительно невысока - всего 650°С, но в обычных условиях расплавить магний довольно трудно: нагретый на воздухе до 550°С, он вспыхивает и мгновенно сгорает ослепительно ярким пламенем (это свойство магния широко используют в пиротехнике). Чтобы поджечь этот металл, достаточно поднести к нему зажженную спичку, а в атмосфере хлора он загорается даже при комнатной температуре. При горении магния выделяется большое количество ультрафиолетовых лучей и тепла: 4 грамма этого «топлива» хватит, чтобы вскипятить стакан ледяной воды.
На воздухе магний быстро тускнеет, так как покрывается окисной пленкой. Эта пленка служит надежным панцирем, предохраняющим металл от дальнейшего окисления.
Магний весьма агрессивен: он легко отнимает кислород и хлор у большинства элементов.
Будучи устойчивым против воздействия некоторых кислот, соды, едких щелочей, бензина, керосина, минеральных масел, магний бессилен против морской воды и вынужден растворяться в ней. Он почти не реагирует с холодной водой, но энергично вытесняет водород из горячей.
Земная кора богата магнием (более 2,3%). Лишь шесть его «коллег» по таблице Менделеева находятся в природе в больших количествах. Как полагают ученые, особенно велико содержание этого элемента в нижних слоях земной мантии. Магний входит в состав почти 200 известных минералов. Среди них есть совсем не обычный: его легко сложить, как носовой платок, в него можно завернуть что-либо, как в бумагу, наконец, его нетрудно разорвать пальцами в клочки/
Уникальный образец такого минерала был найден лет двадцать назад на Дальнем Востоке. При проходке шахты в месторождении полиметаллических руд рабочие обнаружили небольшую пещеру и в ней - свисающую с потолка серовато-белую «занавесь», как бы сложенную вдвое. На ощупь эта «занавесь», имевшая метра полтора в длину и около метра в ширину, напоминала замшу - была так же мягка и эластична. Поражала и необыкновенная легкость «ткани».
Интересную находку направили в Москву. Химический анализ показал, что она состоит в основном из алюмосиликата магния и представляет собой палыгорскит - минерал группы асбеста, впервые обнаруженный в 20-х годах нашего века в Палыгорском месторождении на Урале академиком А. Е. Ферсманом. За необычные свойства минерал чаще называют «горной кожей». Дальневосточный образец, который хранится в Минералогическом музее Академии наук СССР, примечателен тем, что «горная кожа» таких больших размеров найдена впервые в мире.
Наибольшее промышленное значение как магниевое сырье имеют магнезит, доломит и карналлит.
Существуют два способа производства магния - электротермический и электролитический. В первом случае металл получают непосредственно из окиси, действуя на нее каким-либо восстановителем - углем, алюминием и т. д. Этот способ довольно прост по своей идее и в последнее время находит все более широкое применение. Однако пока основным промышленным способом получения магния является электролитический, представляющий собой электролиз расплавленных магниевых солей, главным образом хлористых. Таким путем можно получать очень чистый металл, содержащий свыше 99,99% магния.
Не только земная кора богата магнием - практически неисчерпаемые и постоянно пополняющиеся запасы его хранят голубые кладовые океанов и морей. Достаточно сказать, что лишь в 1 кубическом метре морской воды содержится около 4 килограммов магния. Всего же в водах океанов и морей растворено свыше 6·10
16
тонн этого элемента.
Даже далекие от математики люди, видимо, могут представить, сколь грандиозна эта величина. Впрочем, для большей наглядности приведем следующий пример: с начала нашего летоисчисления человечество прожило лишь немногим более 60 миллиардов (6·10
10
) секунд. Если бы с первых дней нашей эры люди начали добывать магний из морской воды, то для того, чтобы к настоящему времени исчерпать все водные запасы этого элемента, пришлось бы каждую секунду извлекать по миллиону тонн магния!
Но пока Нептун может быть спокоен за свои богатства: даже во время второй мировой войны, когда производство магния было максимальным, из морской воды получали всего 80 тысяч тонн магния в год (а не в секунду!). Технология извлечения его довольно проста. Морскую воду смешивают в огромных баках с известковым молоком, приготовляемым из морских раковин. В результате образуется так называемое «магнезиальное молоко», которое затем превращается в хлорид магния. В дальнейшем магний отделяют от хлора электролизом. Недавно японская фирма «Курита когио» спроектировала завод по комплексному использованию морской воды. По проектным данным, при переработке 4 миллионов литров воды будет получено 108 тонн поваренной соли, 2,2 тонны глауберовой соли, 16,7 тонны хлора и 15,9 тонны магния. Кроме того, завод даст 3 миллиона литров питьевой воды и большое количество рассола для производства каустической соды.
Источником магния может быть и вода соленых озер, содержащая хлористый магний (так называемая рапа). У нас в стране такие «склады» магния есть в Крыму (Сакское и Сасык-Ивашское озера), в Поволжье (озеро Эльтон) и других районах.
Итак, вы уже знаете, что представляет собой магний и как осуществляется его добыча. Ну, а для каких же целей служит этот элемент и его соединения?
Легкость могла бы сделать этот металл прекрасным конструкционным материалом. Но, увы, чистый магний - мягок и непрочен. Поэтому конструкторы вынуждены использовать сплавы магния с другими металлами. Особенно широко применяют сплавы магния с алюминием, цинком и марганцем. Каждый из компонентов этого содружества вносит свой «пай» в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионные свойства. Ну, а магний? Магний придает сплаву легкость - детали из магниевого сплава на 20 - 30% легче алюминиевых и на 50 - 75% легче чугунных и стальных. Сплавы этого элемента все чаще «приглашаются на работу» в автомобилестроение, текстильную промышленность, полиграфию.
У магниевых сплавов есть много друзей, которые повышают их жаростойкость и пластичность, снижают их окисляемость. Это, например, литий, бериллий, кальций, церий, кадмий, титан. Но есть, к сожалению, и враги - железо, кремний, никель; они ухудшают механические свойства сплавов, уменьшают сопротивляемость их коррозии.
Широкое применение магниевые сплавы находят в самолетостроении. Еще в 1935 году в СССР был построен самолет «Серго Орджоникидзе», почти на 80% состоящий из магниевых сплавов. Самолет успешно выдержал все испытания и длительное время эксплуатировался в тяжелых условиях.
Ракеты, ядерные реакторы, детали моторов, баки для бензина и масла, корпуса вагонов, автобусов, легковых машин, колеса, маслопомпы, отбойные молотки, пневмобуры, фото- и киноаппараты, бинокли - вот далеко не полный перечень приборов, узлов и деталей, где используют магниевые сплавы.
Немаловажную роль играет магний в металлургии. Его применяют как восстановитель в производстве ряда металлов (ванадия, хрома, титана, циркония). Магний, введенный в расплавленный чугун, модифицирует его, т. е. улучшает его структуру и повышает механические свойства. Отливки из модифицированного чугуна с успехом заменяют стальные поковки.
. Кроме того, магний помогает раскислять сталь и сплавы (уменьшает содержание в них кислорода, являющегося вредной примесью).
Как известно, обычные радиолампы начинают нормально работать лишь после того, как нагреваются до 800°С. Каждый раз, когда вы включаете радиоприемник или телевизор, приходится некоторое время ждать, прежде чем польются звуки музыки или замерцает голубой экран. Чтобы устранить этот недостаток радиоламп, польские ученые предложили покрывать катоды окисью магния: новые лампы приступают к работе тотчас же после включения.
Свойство магния (в виде порошка, проволоки или ленты) гореть белым ослепительным пламенем широко используют в военной технике - для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. До недавнего времени с этим элементом были хорошо знакомы фотографы: «Спокойно! Снимаю!» - и яркая вспышка магниевого порошка озаряла лица желавших запечатлеть себя для потомства. Сейчас в этой роли магний уже не выступает - мощные электрические лампы вынудили его подать в отставку.