Рассказы о металлах - Венецкий Сергей Иосифович 8 стр.


Во время первой мировой войны настоящую сенсацию вызвал созданный французскими инженерами самолет, который был вооружен не пулеметом, как обычно, а пушкой, наводившей страх на немецких летчиков. Но каким же образом удалось поставить пушку на самолет? Ведь грузоподъемность тогдашних «этажерок» была очень мала. Оказалось, что пушке помог забраться в самолет... ванадий. Французские авиационные пушки были изготовлены из ванадиевой стали. При относительно небольшом весе они обладали прекрасными прочностными характеристиками, позволяющими вести сокрушительный огонь по немецким самолетам.

Вслед за этим ванадиевую сталь начали использовать для изготовления солдатских шлемов. Сравнительно легкий шлем из тонкой, но прочной стали надежно предохранял своего владельца от пуль, от осколков гранат. Броня требовалась и для защиты артиллерийской прислуги хотя бы от снайперской пулевой стрельбы. Для этой цели в Шеффилде изготовили броневую сталь, содержащую довольно много кремния и никеля. Увы, при испытаниях, пули легко прошивали плиты из этого металла. Тогда решено было испробовать сталь, содержащую всего 0,2% ванадия.

Успех превзошел все ожидания: сталь выдержала сложнейший экзамен на прочность в 99 случаях из 100!

Так ванадий стал служить не только атаке, но и обороне. Американские, французские, английские фирмы охотно применяли ванадиевую сталь для самых различных целей. Зато совершенно непонятную на первый взгляд позицию заняли немецкие металлурги, которые всегда считались большими специалистами в этих вопросах: они весьма скептически отнеслись к ванадию как легирующему элементу и практически отказались от использования ванадиевой стали. Один из германских заводов дал даже категорическое заключение, что заниматься ее выплавкой не имеет никакого смысла. Это казалось парадоксальным.

Вскоре, однако, все прояснилось: поскольку немцы не располагали собственными ванадиевыми рудами, они не были заинтересованы в том, чтобы цена ванадия на мировом рынке росла вместе со спросом на него; вот почему они всячески пытались затормозить внедрение ванадиевой стали. Сами же они вели интенсивные поиски элементов, способных оказывать такое же действие на сталь, как ванадий. Но вскоре они убедились, что без ванадия не обойтись. Так провалились попытки металлургических «дипломатов» опорочить ванадиевую сталь, а производство ее продолжало расти из года в год.

Авиация, железнодорожный транспорт, электротехника, радиотехника, оборонная промышленность - трудно перечислить все области современной индустрии, где сегодня применяют сталь, содержащую ванадий.

«Услугами» ванадия пользуется и чугун: из высококачественного ванадиевого чугуна отливают поршневые кольца, изложницы, прокатные валки, матрицы для холодной штамповки.

Но ванадий трудится не только как металл-витамин. Соли этого элемента - зеленые, желтые, красные, черные, золотистые (вспомните название, которое дал элементу дель Рио: «панхром» - всецветный) - с успехом служат в производстве красок и особых чернил, в стекольной и керамической промышленности. Кстати, именно с керамического производства и начал ванадий свою практическую деятельность вскоре после того, как был открыт Сёвстремом. Фарфоровые и гончарные изделия с помощью ванадиевых соединений покрывали золотистой глазурью, а стекла окрашивали в зеленый или голубой цвет.

В 1842 году выдающийся русский химик Н. Н. Зинин сумел получить анилин. Это послужило мощным толчком для развития красильного производства. И здесь ванадий пришелся ко двору: оказалось, что одного грамма пятиокиси ванадия достаточно для того, чтобы превратить 200 килограммов бесцветной соли анилина в сильное красящее вещество - черный анилин.

Не обходится без ванадия химия и в наши дни: пятиокись этого элемента - отличный катализатор при производстве серной кислоты, которую называют «хлебом химии». Долгие годы в этой роли выступал платинированный асбест, т. е. асбест с нанесенным на него порошком платины. Но, во-первых, такой ускоритель реакции был весьма дорогим, а во-вторых, довольно нестойким: он часто отказывался работать из-за «отравления» различными газообразными примесями. Вот почему, когда в Одесском химическом институте была разработана технология получения серной кислоты с применением в качестве катализатора окислов ванадия, работники сернокислотных заводов легко отказались от платинированного асбеста. Чудесные свойства окиси ванадия используются также при крекинге нефти, при получении многих сложных органических соединений.

Достоинства ванадия оценили даже ...свиньи. В Аргентине были проведены опыты по введению в их рацион этого элемента. И что же оказалось? Заметно повысился аппетит хрюшек, они быстро прибавляли в весе.

Американские ученые из лаборатории госпиталя в Лонг-Бич исследовали влияние ванадия на рост крыс. Подопытные животные, диета которых была полностью лишена этого элемента, стали расти вдвое медленнее, чем их «подруги» из контрольной группы, получавшие обычный корм. Но стоило лишь ввести в пищу немного ванадия - скорость роста крыс буквально уже через несколько дней восстановилась до нормальной.

По-видимому, ванадий, необходим для деятельности многих живых тканей: он обнаружен в куриных яйцах, мясе кур, коровьем молоке, печени животных и даже в мозгу человека.

Любопытно, что некоторые морские растения и животные - голотурии, асцидии, морские ежи - «коллекционируют» ванадий, извлекая его каким-то неведомым человеку способом из окружающей среды. Одни ученые полагают, что у этой группы живых организмов ванадий выполняет те же функции, что железо в крови человека и высших животных, т. е. помогает ей впитывать кислород, или, образно говоря,

«дышать». Другие ученые считают, что ванадий необходим обитателям морского дна не для дыхания, а для питания. Кто из этих ученых прав, покажут дальнейшие исследования. Пока же удалось установить, что в крови голотурий содержится до 10% ванадия, а у отдельных разновидностей асцидий концентрация этого элемента в крови в миллиарды раз превышает содержание его в морской воде. Настоящие копилки ванадия! Естественно, ученые заинтересовались возможностью добывать ванадий с помощью обитателей подводного царства. В Японии, например, целые километры морских берегов занимают плантации асцидий. Асцидии очень плодовиты: с одного квадратного метра голубых плантаций снимают до 150 килограммов этих животных. После сбора урожая живую ванадиевую «руду» отправляют в специальные лаборатории, где из нее добывают нужный промышленности металл. Недавно в печати появилось сообщение, что японские металлурги уже выплавили сталь, в которой легирующим элементом служит ванадий, «добытый» из асцидий.

В одном из институтов нашей страны проектируется специальное судно для сбора водорослей. Оно будет оснащено новейшими навигационными приборами, подводной телевизионной аппаратурой, различными механическими приспособлениями. Не исключено, что суда подобного типа станут в скором будущем морскими «рудовозами».

Есть «коллекционеры» ванадия и на суше: один из них хорошо знаком каждому - это ядовитый гриб белая поганка. Неравнодушны к нему и некоторые виды плесени, которые вообще не могут развиваться при отсутствии ванадия. Такие растения, которые обладают способностью накапливать в себе тот или иной элемент, называются в науке «биоконцентраторами». Зачастую они оказывают большую помощь геологам, выполняя роль своеобразного индикатора при поиске руд некоторых ценных металлов.

В 1971 году советские палеоботаники обнаружили в отрогах Тянь-Шаня следы неизвестного науке растения (его назвали меннерией), которое представляет собой одноклеточную водоросль, обитавшую на Земле ...полтора миллиарда лет назад. «Позвольте, но какое отношение эта находка имеет к ванадию?» - вправе спросить читатель. Оказывается, прямое: ученые считают, что меннерия в свое время сыграла важную роль в формировании атмосферы нашей планеты, в образовании скоплений в земной коре таких химических элементов, как ванадий и уран.

...Мы рассказали о прошлом и настоящем ванадия. Ну, а что же ждет его завтра? Как в дальнейшем сложится судьба этого замечательного металла?

Трудно предсказывать последующую жизнь ванадия, но, зная его ценные свойства - значительную механическую прочность, большую корроззийную стойкость, высокую температуру плавления, меньший, чем у железа, удельный вес, можно предположить, что в будущем ванадий станет прекрасным конструкционным материалом. Но прежде человек должен научиться отбирать ванадий в больших количествах (значительно больших, чем сейчас!) у природы, которая тщательно хранит его в своих неисчерпаемых «кладовых».

Sc

Ti

V

Cr

Ga

Ge

As

Se

Y

Zr

Nb

Mo

ЗАГАДОЧНЫЙ «X»

Китайская грамота. - «Сибирский красный свинец». - Серые иголки в тигле. - Друзья дают совет. - Вспышки на Солнце. - Французская академия регистрирует открытие. - Фортуна благосклонная. - «Вызывающее» поведение. - Углерод противопоказан. - Сталь покрывается «чешуей». - Чувствительные сплавы. - Первый патент. - Черепашьи темпы. - Разговор с немецким металлургом. - Чтобы не попасть в кабалу. - Запасов много. - Хромовые сапоги. - Боги проливают кровь. - Выход из положения. - Новая специальность. - Вне конкуренции. - Неожиданные трудности. - «Принимаю огонь на себя». - «Броня» для алмаза. - «Англичане понимают толк...»

Перелистайте любой металлургический справочник, и среди многочисленных марок сталей вы, безусловно, не раз встретите такие, в которые входит буква «X»: Х18Н10Т, Х12М, 0Х23Ю5, ШХ15, 8Х4В4Ф1, Х14Г14НЗТ, 12Х2НВФА, 30ХМЮА и многие другие. Для несведущего в этой области человека такой «тайный шифр» понятен не больше, чем китайские иероглифы. Но, как музыкант, читая ноты, слышит притаившуюся в них музыку, так и металлург легко разбирается в этих на первый взгляд случайных комбинациях букв и цифр. Даже беглого взгляда достаточно, чтобы увидеть общее для перечисленных марок сталей: все они в том или ином количестве содержат элемент хром (о чем свидетельствует буква «X»),

Вместе со своими «коллегами» по легированию - никелем, вольфрамом, молибденом, ванадием, титаном, цирконием, ниобием и другими элементами - хром позволяет выплавлять стали самого разнообразного назначения. Применяемая в современной технике сталь должна многое «уметь»: сопротивляться колоссальным давлениям, противостоять химическим «агрессорам», не зная усталости, выдерживать длительные перегрузки, обладать хорошей обрабатываемостью, не бояться ни жары и ни холода. В эту богатую гамму свойств стали вносит свою лепту и хром.

...Еще в 1766 году петербургский профессор химии И. Г. Леман описал новый минерал, найденный на Урале на Березовском руднике, в 15 километрах от Екатеринбурга (ныне Свердловск). Обрабатывая камень соляной кислотой, Леман получил изумрудно-зеленый раствор, а в образовавшемся белом осадке обнаружил свинец. Спустя несколько лет, в 1770 году, Березовские рудники описал академик П. С. Паллас. «Березовские копи, - писал он, - состоят из четырех рудников, которые разрабатываются с 1752 года. В них наряду с золотом добываются серебро и свинцовые руды, а также находят замечательный красный свинцовый минерал, который не был обнаружен больше ни в одном другом руднике России. Эта свинцовая руда бывает разного цвета (иногда похожего на цвет киновари), тяжелая и полупрозрачная... Иногда маленькие неправильные пирамидки этого минерала бывают вкраплены в кварц подобно маленьким рубинам. При размельчении в порошок она дает красивую желтую краску...». Минерал был назван «сибирским красным свинцом». Впоследствии за ним закрепилось название «крокоит».

Образец этого минерала был в конце XVIII века привезен Палласом в Париж. Крокоитом заинтересовался известный французский химик Луи Никола Воклен. В 1796 году он подверг минерал химическому анализу. «Все образцы этого вещества, которые имеются в нескольких минералогических кабинетах Европы, - писал Воклен в своем отчете, - были получены из этого (т. е. Березовского. - С. В.) золотого рудника. Раньше рудник был очень богат этим минералом, однако говорят, что несколько лет назад запасы минерала в руднике истощились и теперь этот минерал покупают на вес золота, в особенности если он желтый. Образцы минерала, не имеющие правильных очертаний или расколотые на кусочки, годятся для использования их в живописи, где они ценятся за свою желто-оранжевую окраску, не изменяющуюся на воздухе... Красивый красный цвет, прозрачность и кристаллическая форма сибирского красного минерала заставила минералогов заинтересоваться его природой и местом, где он был найден; большой удельный вес и сопутствующая ему свинцовая руда, естественно, заставляли предполагать о наличии свинца в этом минерале...»

В 1797 году Воклен повторил анализ. Растертый в порошок крокоит он поместил в раствор углекислого калия и прокипятил. В результате опыта ученый получил углекислый свинец и желтый раствор, в котором содержалась калиевая соль неизвестной тогда кислоты. При добавлении к раствору ртутной соли образовывался красный осадок, после реакции со свинцовой солью появлялся желтый осадок, а введение хлористого олова окрашивало раствор в зеленый цвет. После осаждения соляной кислотой свинца Воклен выпарил фильтрат, а выделившиеся красные кристаллы (это был хромовый ангидрид) смешал с углем, поместил в графитовый тигель и нагрел до высокой температуры. Когда опыт был закончен, ученый обнаружил в тигле множество серых сросшихся металлических иголок, весивших в 3 раза меньше, чем исходное вещество. Так впервые был выделен новый элемент. Один из друзей Воклена предложил ему назвать элемент хромом (по-гречески «хрома» - окраска) из-за яркого разнообразного цвета его соединений. Между прочим, слог «хром» в значении «окрашенный» входит во многие термины, не связанные с элементом хромом: слово «хромосома», например, в переводе с греческого означает «тело, которое окрашивается»; для получения цветного изображения пользуютсяприбором хромоскопом; фотолюбителям хорошо известны пленки «изопанхром», «панхром», «ортохром»; яркие образования в атмосфере Солнца астрофизики называют хромосферными вспышками и т. д.

Сначала Воклену не понравилось предложенное название, поскольку открытый им металл имел скромную серую окраску и как будто не оправдывал своего имени. Но друзья все же сумели уговорить Воклена и, после того как французская Академия наук по всей форме зарегистрировала его открытие, химики всего мира внесли слово «хром» в списки известных науке элементов.

Фортуна оказалась достаточно благосклонной к новому металлу. Высокая температура плавления хрома, его чрезвычайно большая твердость, легкость образования сплавов с другими металлами, в частности с железом, заинтересовали прежде всего металлургов. Годы не охладили этого интереса: и в наши дни среди разнообразных направлений использования хрома металлургия по-прежнему продолжает занимать ведущее место.

Хром обладает всеми характерными свойствами металлов - хорошо проводит тепло, почти не оказывает сопротивления электрическому току, имеет присущий большинству металлов блеск. Любопытна одна особенность хрома: при температуре около 37°С он ведет себя явно «вызывающе» - многие его физические свойства резко, скачкообразно меняются. В этой температурной точке внутреннее трение хрома достигает максимума, а модуль упругости падает до минимальных значений. Так же внезапно изменяются электропроводность, кооффициент линейного расширения, термоэлектродвижущая сила. Пока ученые не могут объяснить эту аномалию.

Даже незначительные примеси делают хром очень хрупким, поэтому в качестве конструкционного материала его практически не применяют, зато как легирующий элемент он издавна пользуется у металлургов почетом. Небольшие добавки его придают стали твердость и износостойкость. Такие свойства присущи шарикоподшипниковой стали, в состав которой, наряду с хромом (до 1,5%), входит углерод (около 1%). Образующиеся в ней карбиды хрома отличаются исключительной твердостью - они-то и позволяют металлу уверенно сопротивляться одному из опаснейших врагов - износу.

Назад Дальше