Из всех монстров, которыми наполнены кошмары нашего фольклора, самыми страшными являются оборотни, поскольку нас пугает неожиданное превращение того, что нам хорошо знакомо, в нечто ужасное. Мы ищем серебряные пули, которые могли бы волшебным образом уложить оборотней наповал.
Хорошо знакомый программный проект напоминает таких оборотней (по крайней мере, в представлении менеджеров, не являющихся техническими специалистами) тем, что, будучи простым и невинным на вид, он может стать чудищем проваленных графиков работы, раздувшихся бюджетов и неработающих продуктов.
И мы слышим отчаянные крики с просьбами дать серебряную пулю - нечто, способное снизить стоимость программных продуктов так же резко, как снизилась стоимость компьютеров.
Но, вглядываясь в предстоящее десятилетие, мы не видим никакой серебряной пули. Нет ни одного открытия ни в технологии, ни в методах управления, одно только использования которых обещало бы хоть на порядок величин повысить производительность, надежность, простоту. В этой главе мы попытаемся увидеть, почему это так, исследуя природу задач программирования и свойства предлагаемых пуль.
Однако скептицизм - это не пессимизм. Хотя мы не видим ошеломляющих прорывов и действительно считаем их несвойственными природе программирования, происходит много вселяющих надежды нововведений. Дисциплинированные и последовательные усилия, направленные на их развитие, распространение и использование, действительно могут дать рост на порядок величин. Нет царского пути, но все же путь есть.
Первым шагом к лечению болезней стала замена представлений о демонах и "соках" в организме теорией бактерий. Сам этот шаг, обещавший надежду, опроверг все мечты о чудесном исцелении. Он подсказал исследователям, что прогресс будет осуществляться шажками, с большим трудом, и что постоянное и неослабное внимание нужно уделять санитарии. То же происходит сегодня с программной инженерией.
Неизбежны ли трудности? Трудности, вытекающие из сущности
Серебряных пуль не только не видно в настоящее время, но в силу самой природы программного обеспечения маловероятно, что они вообще будут найдены - не будет изобретений, способных повлиять на продуктивность создания, надежность и простоту программного обеспечения так, как электроника, транзисторы и интегральные схемы - на аппаратное обеспечение компьютеров. Не следует ожидать, что когда-либо в будущем каждые два года будет происходить двукратный рост.
Во-первых, следует считать необычным не то, что так медленно происходит прогресс в программировании, а то, что он так быстро идет в аппаратном обеспечении компьютеров. Ни одна другая технология за всю историю цивилизации не имела за 30 лет своего развития роста соотношения производительность/цена на шесть порядков. Ни одна другая технология не позволяет выбрать, какой выигрыш предпочесть: улучшить технические характеристики или снизить затраты. Оба эти выигрыша стали возможны благодаря переходу производства компьютеров из сборочного производства в обрабатывающее.
Во-вторых, чтобы посмотреть, какой скорости развития можно ожидать от программных технологий, полезно изучить имеющиеся в них трудности. Следуя Аристотелю, я делю их на сущности - трудности, внутренне присущие природе программного обеспечения, и акциденции - трудности, которые сегодня сопутствуют производству программного обеспечения, но не являются внутренне ему присущими.
Акциденции я рассматриваю в следующем параграфе. Сначала рассмотрим сущность.
Сущностью программного объекта является конструкция, состоящая из сцепленных вместе концепций: наборов данных, взаимосвязей между элементами данных, алгоритмов и вызовов функций. Эта сущность является абстрактной в том отношении, что концептуальная конструкция остается одной и той же при различных представлениях. Тем не менее она обладает высокой точностью и большим числом деталей.
Я считаю, что сложность создания программного обеспечения заключается в задании технических требований, проектировании и проверке этой концептуальной конструкции, а не в затратах, связанных с ее представлением и проверкой точности представления. Конечно, мы делаем синтаксические ошибки, но в большинстве систем они несущественны в сравнении с концептуальными ошибками.
Верно то, что создание программных систем всегда будет трудным. Серебряной пули нет по самой природе вещей.
Рассмотрим неотъемлемые свойства этой несократимой сущности современных программных систем: сложность, согласованность, изменяемость и незримость.
Сложность. Сложность программных объектов более зависит от их размеров, чем, возможно, для любых других создаваемых человеком конструкций, поскольку никакие две их части не схожи между собой (по крайней мере, выше уровня операторов). Если они схожи, то мы объединяем их в одну подпрограмму, открытую или закрытую. В этом отношении программные системы имеют глубокое отличие от компьютеров, домов и автомобилей, где повторяющиеся элементы имеются в изобилии.
Сами цифровые компьютеры сложнее, чем большинство изготавливаемых людьми вещей. Число их состояний очень велико, поэтому их трудно понимать, описывать и тестировать. У программных систем число возможных состояний на порядки величин превышает число состояний компьютеров.
Аналогично, масштабирование программного объекта - это не просто увеличение в размере тех же самых элементов, это обязательно увеличение числа различных элементов. В большинстве случаев эти элементы взаимодействуют между собой неким нелинейным образом, и сложность целого растет значительно быстрее, чем линейно.
Сложность программ является существенным, а не второстепенным свойством. Поэтому описания программных объектов, абстрагирующиеся от их сложности, часто абстрагируются от их сущности. Математика и физические науки за три столетия достигли больших успехов, создавая упрощенные модели сложных физических явлений, получая из этих моделей свойства и проверяя их опытным путем. Это удавалось благодаря тому, что сложности, игнорировавшиеся в моделях, не были существенными свойствами явлений. И это не действует, когда сложности являются сущностью.
Многие классические трудности разработки программного обеспечения проистекают их этой сложности сущности и ее нелинейного роста при увеличении размера. Сложность служит причиной трудности процесса общения между участниками бригады разработчиков, что ведет к ошибкам в продукте, превышению стоимости разработки, затягиванию выполнения графиков работ. Сложность служит причиной трудности перечисления, а тем более понимания, всех возможных состояний программы, а отсюда возникает ее ненадежность. Сложность функций служит причиной трудностей при их вызове, из-за чего программами трудно пользоваться. Сложность структуры служит причиной трудностей при развитии программ и добавлении новых функций так, чтобы не возникали побочные эффекты. Сложность структуры служит источником невизуализуемых состояний, в которых нарушается система защиты.
Сложность служит причиной не только технических, но и административных проблем. Из-за сложности трудно осуществлять надзор, а в результате страдает концептуальная целостность. Трудно найти и держать под контролем все свободные концы. Обучение и понимание становится колоссальной нагрузкой, из-за чего текучесть рабочей силы превращается в катастрофу.
Согласованность. Люди, связанные с программированием, не одиноки в проблемах сложности. Физика имеет дело с объектами чрезвычайной сложности даже на уровне элементарных частиц. Однако физик работает в твердой уверенности, что можно найти общие принципы, будь то кварки или общая теория поля. Эйнштейн неоднократно утверждал, что природа должна иметь простые объяснения, поскольку Богу не свойственны капризность и произвол.
У разработчика программного обеспечения нет такой утешительной веры. Сложность, с которой он должен совладать, по большей части является произвольной, необоснованно вызванной многочисленными человеческими установлениями и системами, которым должны удовлетворить его интерфейсы. Системы различаются интерфейсами и меняются во времени не в силу необходимости, а лишь потому, что были созданы не Богом, а разными людьми.
Во многих случаях программное обеспечение должно согласовываться, поскольку только что появилось на сцене. В других случаях оно должно согласовываться, поскольку есть ощущение, что его легче всего согласовать. Но во всех случаях значительная часть сложности происходит от согласования с другими интерфейсами, и это невозможно упростить только в результате перепроектирования программного обеспечения.
Изменяемость. Программные объекты постоянно подвержены изменениям. Конечно, это относится и к зданиям, автомобилям, компьютерам. Но произведенные вещи редко подвергаются изменениям после изготовления. Их заменяют новые модели, или существенные изменения включают в более поздние серийные экземпляры того же базового проекта. Отзывы у потребителей автомобилей на практике встречаются весьма редко, а изменения работающих компьютеров еще реже. То и другое случается значительно реже, чем модификация работающего программного обеспечения.
Отчасти это происходит потому, что программное обеспечение в системе воплощает ее назначение, а назначение более всего ощущает влияние изменений. Отчасти это происходит потому, что программное обеспечение легче изменить: это чистая мысль, бесконечно податливая. Здания тоже перестраиваются, но признаваемая всеми высокая стоимость изменений умеряет капризы новаторов.
Все удачные программные продукты подвергаются изменениям. При этом действуют два процесса. Во-первых, как только обнаруживается польза программного продукта, начинаются попытки применения его на грани или за пределами первоначальной области. Требование расширения функций исходит, в основном, от пользователей, которые удовлетворены основным назначением и изобретают для него новые применения.
Во-вторых, удачный программный продукт живет дольше обычного срока существования машины, для которой он первоначально был создан. Приходят если не новые компьютеры, то новые диски, новые мониторы, новые принтеры, и программа должна быть согласована с возможностями новых машин.
Короче, программный продукт встроен в культурную матрицу приложений, пользователей, законов и машин. Все они непрерывно меняются, и их изменения неизбежно требуют изменения программного продукта.
Незримость. Программный продукт невидим и невизуализуем. Геометрические абстракции являются мощным инструментом. План здания помогает архитектору и заказчику оценить пространство, возможности перемещения, виды. Становятся очевидными противоречия, можно заметить упущения. Масштабные чертежи механических деталей и объемные модели молекул, будучи абстракциями, служат той же цели. Геометрическая реальность схватывается в геометрической абстракции.
Реальность программного обеспечения не встраивается естественным образом в пространство. Поэтому у него нет готового геометрического представления подобно тому, как местность представляется картой, кремниевые микросхемы - диаграммами, компьютеры - схемами соединений. Как только мы пытаемся графически представить структуру программы, мы обнаруживаем, что требуется не один, а несколько неориентированных графов, наложенных один на другой. Несколько графов могут представлять управляющие потоки, потоки данных, схемы зависимостей, временных последовательностей, соотношений пространства имен. Обычно они даже не являются плоскими, не то что иерархическими. На практике одним из способов установления концептуального контроля над такой структурой является обрезание связей до тех пор, пока один или несколько графов не станут иерархическими.[2]
Несмотря на прогресс, достигнутый в ограничении и упрощении структур программного обеспечения, они остаются невизуализуемыми по своей природе, тем самым лишая нас одного из наиболее мощных инструментов оперирования концепциями. Этот недостаток не только затрудняет индивидуальный процесс проектирования, но и серьезно затрудняет общение между разработчиками.
Прежние прорывы разрешили второстепенные трудности
Если рассмотреть три наиболее плодотворных шага в произошедшем развитии программных технологий, то обнаружится, что все они были сделаны в направлении решения различных крупных проблем разработки программ, но эти проблемы затрагивали второстепенные, а не относящиеся к сущности трудности. Можно также видеть естественные пределы экстраполирования каждого их этих направлений.
Языки высокого уровня. Конечно, наибольшее значение для роста производительности, надежности и простоты имело все более широкое использование языков высокого уровня. Большинство исследователей считает, что этим был достигнут, по крайней мере, пятикратный рост производительности при одновременном выигрыше в надежности, простоте и легкости понимания.
Что делает язык высокого уровня? Он освобождает программу от значительной доли необязательной сложности. Абстрактная программа состоит из концептуальных конструкций: операций, типов данных, последовательностей и связи. Конкретная машинная программа связана с битами, регистрами, условиями, переходами, каналами, дисками и прочим. В той мере, в какой в языке высокого уровня воплощены необходимые абстрактной программе конструкции и избегаются конструкции низшего порядка, он ликвидирует целый уровень сложности, совершенно не являющийся необходимым свойством программы.
Самое большее, что может сделать язык высокого уровня, - это предоставить все конструкции, которые по замыслу программиста содержит абстрактная программа. Конечно, уровень утонченности наших представлений о структурах данных, типах данных и операциях неуклонно растет, но с постоянно убывающей скоростью. И языки в своем развитии все больше приближаются к изощренности нашего мышления.
Более того, с некоторого момента дальнейшая разработка языков высокого уровня становится обузой, осложняющей, а не упрощающей интеллектуальные задачи пользователя, редко использующего эзотерические конструкции.
Разделение времени. Большинство исследователей считает, что благодаря работе в режиме разделения времени произошел большой рост производительности труда программистов и качества создаваемых программных продуктов, хотя и не такой значительный, как вызванный использованием языков высокого уровня.
Разделение времени помогает решить совсем другую задачу. Благодаря разделению времени обеспечивается безотлагательность, и потому возможность иметь общее впечатление о сложности. Из-за медленной оборачиваемости при пакетной обработке мы неизбежно забываем мелочи, если не самое направление нашей мысли, в тот момент, когда мы прервались и начали компиляцию и выполнение программы. Этот обрыв мысли дорого обходится по времени, поскольку приходится восстанавливать ее в памяти. В худшем случае, можно вообще потерять представление о том, что происходит со сложной системой.
Медленная оборачиваемость, как и сложности машинных языков, является второстепенной, а не существенной трудностью процесса программирования. Предельный вклад, вносимый разделением времени, определяется непосредственно. Главное - это сократить время отклика системы. По мере приближения его к нулю, оно переходит порог скорости человеческого восприятия, составляющей около 100 миллисекунд. Дальше никакой выгоды получить уже нельзя.
Объединенные среды программирования. Считается, что Unix и Interlisp, первые широко распространенные интегрированные среды программирования, повысили производительность в несколько раз. Почему?
Они направлены на преодоление второстепенных трудностей совместного использования программ путем использования общих библиотек, унифицированных форматов файлов, каналов и фильтров. В результате концептуальные структуры, которые, в принципе, всегда могут вызывать, обмениваться данными и использовать друг друга, получают возможность осуществлять это практически.
Это достижение, в свою очередь, стимулировало развитие целых инструментальных наборов, поскольку всякий новый инструмент мог применяться к любым программам, используя стандартные форматы.
Благодаря этим успехам среды программирования стали предметом многих сегодняшних исследований в программной инженерии. В следующем параграфе мы рассмотрим, что от них можно ожидать, и какие им присуще ограничения.
Надежды на серебро
Рассмотрим теперь те технические достижения, которые чаще всего выдвигаются кандидатами на роль серебряной пули. К каким задачам они обращаются? Задачам, относящимся к сущности, или остаткам наших акцидентных сложностей? Предлагают ли они революционное развитие или пошаговое продвижение?
Ada и другие достижения языков высокого уровня. Одним из наиболее рекламируемых достижений последнего времени является язык программирования Ada - язык высокого уровня общего назначения 80-х годов. Ada действительно не только отражает эволюционное развитие концепций языков, но и воплощает черты, поддерживающие современные идеи проектирования и модульности. Возможно, большим достижением является не язык Ada, а философия Ada как философия модульности, абстрактных типов данных, иерархического структурирования. Ada, пожалуй перегружен возможностями, будучи естественным продуктом процесса, породившего требования, положенные в основу его разработки. Это не смертельно, поскольку подмножества рабочих словарей могут решить проблему изучения, а прогресс электроники даст нам дешевые миллионы операций в секунду, решающие проблему компиляции. Развитие структурированности программных систем - это очень хорошее применение для денег, которые мы тратим на приобретение все больших вычислительных мощностей. Операционные системы, громко осуждавшиеся в 60-х годах за дороговизну памяти и вычислений, оказались хорошим способом применения быстродействия и дешевой памяти, полученных в результате быстрого развития аппаратных средств.
Тем не менее Ada не станет той серебряной пулей, которая уложит монстра низкой производительности производства программного обеспечения. В конце концов это всего лишь еще один язык высокого уровня, а самую большую отдачу от применения таких языков мы уже получили при первом переходе от второстепенной сложности машин к более абстрактной формулировке пошаговых решений. После устранения тех акциденций остались менее существенные, и выгоды от их устранения будет, конечно, меньше.
Я предвижу, что через десятилетие, когда оценят эффективность Ada, будет признан значительный вклад этого языка, но не благодаря какой-либо отдельной его возможности и даже не благодаря им всем вместе взятым. Не станут причиной успехов и новые среды программирования на Ada. Наибольшим вкладом Ada явится то, что переход на этот язык послужит причиной изучения программистами современных методов проектирования программного обеспечения.