32 ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ИХ КЛАССИФИКАЦИЯ
Погрешность измерения встречается всегда при любых видах измерений и определяется метрологами как отклонение результата измерения от действительного размера измеряемой величины. В числовых величинах погрешность измерения ΔХ (дельта икс) подсчитывают как разность между результатом измерения Хизм и действительным размером Хдейств измеряемой величины: ΔХ = Хизм– Хдейств .
Погрешности при измерениях зависят от многих причин и классифицируются следующим образом:
1) инструментальная погрешность возникает по ряду причин:
а) износ деталей измерительного прибора;
б) излишнее трение в механизме прибора;
в) неточное нанесение штрихов на шкалу прибора;
г) несоответствие действительного и номинального значения меры и т. д.;
2) систематическая погрешность – составляющая погрешности результата измерения, остающаяся постоянно для данного ряда измерений или же закономерно изменяющаяся при повторных измерениях одной и той же физической величины.
Систематическая погрешность по характеру проявления подразделяется на:
а) постоянную;
б) прогрессивную;
в) периодическую.
Постоянная систематическая погрешность – погрешность, длительное время сохраняющая свое значение (например, в течение всей серии измерений). Эта погрешность встречается наиболее часто. Прогрессивная систематическая погрешность – непрерывно возрастающая погрешность (например, от постоянного устойчивого износа измерительных механизмов, приборов).
Периодическая систематическая погрешность – погрешность, значение которой является функцией времени или функцией перемещения указателя измерительного прибора (например, наличие эксцентриситета в угломерных приборах с круговой шкалой вызывает систематическую погрешность, изменяющуюся по периодическому закону).
Исходя из причин появления систематических погрешностей, различают:
1) инструментальные погрешности;
2) погрешности метода;
3) субъективные погрешности;
4) погрешности вследствие отклонения внешних условий измерения от установленных методами.
Погрешность метода измерений возникает из-за несовершенства метода измерений или допущенных его упрощений, установленных методикой измерений. Субъективная погрешность измерения обусловлена индивидуальными погрешностями оператора (ее называют еще личной погрешностью).
Погрешность вследствие отклонения (в одну сторону) внешних условий измерения от установленных методикой измерения приводит к возникновению систематической составляющей погрешности измерения.
33 КЛАССИФИКАЦИЯ И СВОЙСТВА ИЗМЕРЕНИЯ
На практике нужно осуществлять измерения различных величин, веществ, явлений, процессов. Всевозможные проявления всякого свойства создадут множества, изображение компонентов которых на упорядоченное множество чисел или в общем случае условных знаков создадут шкалы измерения данных свойств.
Шкалой физической величины называется шкала измерений количественного свойства.
В зависимости от логической структуры проявления свойств можно выделить пять ключевых видов шкал измерения.
1. Шкала наименований (школа классификаций). Подобные шкалы применяются для классификации эмпирических объектов, свойства которых выражаются лишь в отношении эквивалентности. Данные свойства нельзя принимать за физические величины, вследствие этого подобные шкалы не являются шкалами физических величин. Это наиболее простой вид шкал.
В шкалах наименований, в которых причисление отражаемого свойства к какому-либо классу эквивалентности исполняется с применением органов чувств человека, наиболее соответствует результат, избранный большинством экспертов. Как пример можно привести атласы цветов, предназначенные для идентификации цвета.
2. Шкала порядка (шкала рангов). В случае проявления свойства данного эмпирического объекта применительно к эквивалентности и порядку по возрастанию или убыванию количественного проявления свойства для него возможно построение шкалы порядка. Она может быть монотонно возрастающей или убывающей и дает возможность определить отношения больше либо меньше между величинами, характеризующими данное свойство.
В ситуации, когда степень познания явления не дает возможность достоверно установить отношения, существующие между величинами данной характеристики, используют эмпирические шкалы порядка. Условная шкала – это шкала физических величин, первоначальные значения которой сформулированы в условных единицах.
3. Шкала интервалов (шкала разностей). Эта шкала используется для объектов, качества которых удовлетворяют отношениям эквивалентности порядка n аддитивности. Шкала интервалов включает в себя одинаковые интервалы, обладает единицей измерения и произвольно выбранным началом – нулевая точка.
4. Шкала отношений. Эта шкала изображает свойства эмпирических объектов, удовлетворяющих отношениям эквивалентности, порядка и аддитивности (шкалы второго порядка), а зачастую и пропорциональности. Как пример можно привести термодинамическую температуру (первый порядок) и шкалу массы (второй порядок).
5. Абсолютные шкалы – шкалы, которые имеют все свойства шкал отношений, а также обладают естественным и однозначным определением единицы измерения и обладающие полной самостоятельностью по отношению к принятой системе единиц измерений.
34 СТАНДАРТИЗАЦИЯ В СОЗДАНИИ И ФУНКЦИОНИРОВАНИИ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКОГО МЕХАНИЗМА ГОСУДАРСТВЕННОГО УПРАВЛЕНИЯ
Еще во времена существования СССР большое внимание на самом высоком государственном уровне уделялось стандартизации в создании и функционировании организационно-технического механизма государственного управления. В 1970–1980–е гг. были разработаны и утверждены Правительством СССР организационно-методические стандарты, регламентировавшие общие положения и установившие общие требования. Эти стандарты обеспечивали организационно-техническое единство объектов стандартизации, при этом они регламентировали построение и обеспечение информационной совместимости документации в системе государственного управления. Кроме того, была разработана и утверждена Правительством страны единая система классификации и кодирования технико-экономической и социальной информации (ЕСКК ТЭСИ). Классификация и кодирование в рамках указанной системы осуществлялись с целью унификации и стандартизации информационного обеспечения процессов хозяйственной деятельности, включая государственное управление.
В настоящее время действуют общероссийские классификаторы технико-экономической и социальной информации.
1. Общероссийский классификатор стандартов (ОКС).
2. Общероссийский классификатор управленческой документации (ОКУД).
3. Общероссийский классификатор информации о населении (ОКИН).
4. Общероссийский классификатор органов государственной власти и управления (ОКОГУ).
5. Общероссийский классификатор объектов административно-территориального деления (ОКАТО).
6. Общероссийский классификатор предприятий и организаций, функционирующих на территории России (ОКПО).
7. Общероссийский классификатор форм собственности (ОКФС).
8. Общероссийский классификатор организационно-правовых форм (ОКОПФ).
9. Общероссийский классификатор экономических регионов (ОКЭР).
10. Общероссийский классификатор единиц измерения (ОКЕИ).
11. Общероссийский классификатор видов экономической деятельности, продукции и услуг (ОКВЭД).
В настоящее время в России действует единая система технологической подготовки производства (ЕСТПП) – свод стандартов, устанавливающих современные методы и средства организации управления и решения задач технологической подготовки производства. ЕСТПП также выдвигает определенные требования к таким системам, как классификация и кодирование элементов ТПП (технологической подготовки производства); построение системы информации; стандартизация средств и технологических процессов основного и вспомогательного производства; стандартизация правил оформления технологической и организационно-технологической документации регламентируется стандартами единой системы технологической документации – ЕСТД.
35 ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ
Единство измерений имеет очень важное практическое значение для стабильного развития всего хозяйственного комплекса страны. Поэтому еще в конце 1960–гг. в СССР была разработана Государственная система обеспечения единства измерений (ГСИ), охватывающая комплекс государственных стандартов.
При этом обеспечение единства измерений было возложено на Государственную метрологическую службу, возглавляемую Госстандартом, и метрологические службы основных министерств (МПС, МГА, МО и т. д.).
Основой обеспечения единства измерений являются эталоны. От одного исходного начала – государственного эталона – единица измерений распространяется при помощи вторичных эталонов и образцовых средств измерений столько раз, сколько требуется для передачи ее размера всем рабочим средствам измерений (РСИ), использующимся во всех отраслях хозяйственного комплекса страны.
Вполне очевиден тот факт, что повышение точности эталонов способствует увеличению точности измерений. В связи с этим эталоны постоянно совершенствуются, разрабатываются новые методы воспроизведения единиц, проводятся международные сличения эталонов.
При соблюдении требований единства измерений одних и тех же размеров однородных физических величин погрешности результатов измерений не должны выходить за пределы установленных ГОСТами или другими нормативно-техническими документами норм. Достижение единства и требуемой точности измерений является важным фактором обеспечения высокого качества измерений как в настоящее время, так и в будущем. Не случайно поэтому 27 апреля 1993 г. был принят Закон РФ "Об обеспечении единства измерения". В этом Законе определено, что единство измерений обеспечивается прежде всего единообразием средств измерений. Несмотря на постоянное расширение метрологических функций и задач, обеспечение единообразия средств измерений всегда оставалось и остается в настоящее время главным содержанием деятельности метрологических организаций, их первоочередной задачей.
Выше упомянутый Закон установил правовые основы обеспечения единства измерений в России, кроме того, были прописаны следующие положения:
1) об основной терминологии;
2) о регулировании отношений, связанных с обеспечением единства измерений в РФ;
3) об использовании государственных эталонов единиц величин в качестве исходных для воспроизведения и хранения единиц величин с целью передачи их размеров всем средствам измерений данных величин на территории РФ.
36 КАЛИБРОВКА (ПОВЕРКА) СРЕДСТВ ИЗМЕРЕНИЙ
Калибровку проводят органы метрологической службы, она является способом поверки измерительных средств и заключается в сравнении различных мер, их сочетаний или отметок шкал многозначных мер в различных комбинациях и в вычислении по результатам этих сравнений значений отдельных мер или отметок шкал (или поправок к ним) исходя из известного значения одной из них.
Затем в результате сравнения получают систему уравнений, решив которую, находят действительные значения мер.
Согласно Закону "О техническом регулировании" калибровка (или поверка) средств измерений производится метрологическими службами юридических лиц с использованием эталонов, соподчиненных государственным эталонам единиц величин.
После выполнения калибровки средств измерений результаты удостоверяются калибровочным знаком, наносимым на средства измерений, или специальным сертификатом о калибровке, а также записью в эксплуатационных документах.
Ответственность за ненадлежащие выполнение калибровочных работ несут юридические лица, метрологическими службами которых выполнены калибровочные работы.
Контроль за калибровочной деятельностью аккредитованных метрологических служб юридических лиц возложен согласно положению выше указанного Закона РФ на следующие организации:
1) Федеральное агентство по техническому регулированию и метрологии;
2) государственные научные метрологические центры;
3) органы государственной метрологической службы.
Проведение калибровочных работ осуществляется только на договорной основе.
Образцовые средства измерений используются для периодической передачи размеров единиц в процессе поверки средств измерения и эксплуатируются только в подразделениях метрологической службы.
Разряд образцового средства измерения определяется в ходе измерений метрологической аттестации органом Государственного комитета по стандартам. При необходимости особо точные рабочие средства измерения в вышеуказанном порядке могут быть аттестованы на определенный срок как образцовые средства измерения.
И наоборот, образцовые средства измерения, не прошедшие очередную аттестацию по разным причинам, используются как рабочие средства измерения.
37 ПОВЕРОЧНЫЕ СХЕМЫ И СПОСОБЫ ПОВЕРКИ СРЕДСТВ ИЗМЕРЕНИЙ
Важнейшими составными частями систем воспроизведения единиц и передачи их размеров являются поверочные схемы – документы, определяющие порядок передачи размеров единиц различных величин. Первый сборник поверочных схем был выпущен ВНИИМ (Всесоюзным НИИ метрологии) в 1956 г. По состоянию на 1 января 1987 г. в СССР было утверждено 165 государственных поверочных схем. Поверочные схемы были созданы и в других странах различными международными организациями (МОЗМ, СЭВ).
Различают следующие типы поверочных схем, таких как:
1) государственная;
2) ведомственная;
3) локальная.
Из них основная – государственная поверочная схема, распространяющаяся на все средства измерений какой-либо физической величины с учетом требований к содержанию и построению ГОСТа 8.001–80. Государственная поверочная схема представляет собой своего рода каркас метрологического обеспечения вида измерений, устанавливает порядок передачи размеров единицы какой-либо величины от государственного эталона к вторичным эталонам и далее к рабочим средствам измерений, определяет требования к средствам и методам поверок. Поверка представляет собой способ признания средства измерений пригодным к применению на основании результатов контроля соответствия его метрологических характеристик, определяемых экспериментально, установленным требованиям ГОСТов или иных нормативно-технических документов. Результаты поверки средств измерений, признанных годными к применению, оформляются выдачей свидетельства о произведенной поверке, нанесением специального поверительного клейма или иными способами, установленными нормативно-техническими документами на методики поверки.
Различают четыре способа поверки:
1) непосредственное сличение (например, сличение показаний двух стрелочных приборов);
2) сличение при помощи компаратора (специального измерительного прибора) или других средств сравнения (термостата, эталона сравнения, стандартного образца свойств вещества и др.);
3) прямые измерения;
4) косвенные измерения.
При указании способа поверки в текстовой части обычно отражают специфику способа. Государственные поверочные схемы являются важнейшим звеном метрологического обеспечения измерений – они устанавливают порядок передачи размеров единиц различных величин, требования к способам и средствам поверки, а также структуру метрологических служб.
Оформляются поверочные схемы в виде чертежа, причем государственные поверочные схемы содержат пояснения к чертежу. Ведомственные и локальные (местные) поверочные схемы оформляют аналогично – в виде чертежей спо-яснениями.
38 ЭТАЛОНЫ И ИХ КЛАССИФИКАЦИЯ
Государственная поверочная схема упрощенно рассматривается как пирамида, в вершине которой находится государственный эталон (ГЭ), а в основании – рабочие средства измерений (РСИ) той или иной измеряемой физической величины, а в промежуточной зоне (пирамиды) – вторичные эталоны и образцовые средства измерений (ОСИ).
Первичные эталоны воспроизводят единицу какой-либо величины с наивысшей точностью. Они представляют собой уникальные средства измерений, созданные в соответствии с наивысшими достижениями современной науки и техники. В частности, для реализации связи единиц времени, частоты и длины (например, первичного эталона единицы длины – метра) используется длина волны стабилизированных лазеров.
За первичным эталоном следуют вторичные, или специальные, эталоны, воспроизводящие единицу какой-либо величины в особых условиях, и заменяют при этих условиях первичный эталон. Вторичные эталоны в свою очередь подразделяются на следующие:
1) эталон-копия (предназначен для передачи размеров единиц величины рабочим эталонам, он не всегда является физической копией государственного первичного эталона);
2) эталон-свидетель (предназначен для проверки сохранности государственного эталона и для замены его в случае порчи или утраты);
3) эталон-сравнения (используется для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом);
4) рабочий эталон (воспроизводит единицу какой-либо величины от вторичных эталонов и служит для передачи размера эталону более низкого ряда).
Первичные и вторичные, или специальные, эталоны единицы одной физической величины по существу представляют собой эталонный набор, предназначенный для воспроизведения этой единицы во всем диапазоне значений физической величины. За рабочим эталоном следуют:
1) образцовые средства измерения, представляющие собой меру, измерительный прибор или измерительный преобразователь; служат для проверки по ним других средств измерений и утверждены в качестве образцовых;
2) рабочие средства измерений – предназначены непосредственно для измерений любых видов, не связанных с передачей размеров единиц каких-либо величин. Образцовые средства измерений используются для периодической передачи размеров единиц в процессе поверки средств измерения и эксплуатируются только в подразделениях метрологической службы. Разряд образцового средства измерения определяется в ходе измерений метрологической аттестации органом Государственного комитета по стандартам.