Против богов: Укрощение риска - Питер Бернстайн 18 стр.


Достижения де Муавра в решении этой проблемы стоят в ряду наиболее важных математических открытий. Используя вычисления и основные свойства треугольника Паскаля, составляющие содержание биномиальной теоремы, де Муавр демонстрирует, как ряд случайных испытаний, подобных опытам Бернулли с кувшином, приводит к распределению результата вокруг среднего значения. К примеру, предположим, вы вытащили сто камешков подряд из кувшина Якоба, каждый раз возвращая камешек в кувшин и фиксируя отношение числа черных и белых камешков. Теперь предположим, вы выполнили серию таких опытов по сто испытаний в каждом. Де Муавр смог бы заранее приблизительно сказать вам, сколько из этих отношений будут близки к среднему отношению в суммарном числе испытаний и как эти отдельные отношения будут распределены относительно этого среднего.

Распределение де Муавра ныне известно как нормальная, или, в соответствии с ее формой, колоколообразная кривая. Эта кривая показывает, что наибольшее число наблюдений группируется в центре, вблизи среднего значения, вычисленного для суммарного числа наблюдений. Она симметрично спускается по обе стороны от среднего значения, вблизи его круто, а затем все более полого. Другими словами, результаты наблюдений, далекие от среднего значения, менее вероятны, чем близкие к нему.

Форма кривой де Муавра позволила ему вычислить статистическую меру ее дисперсии относительно среднего значения. Эта мера, известная как стандартное или среднее квадратичное отклонение, чрезвычайно важна для решения вопроса о том, включает ли в себя совокупность наблюдений достаточно репрезентативную для изучаемой совокупности выборку. В нормальном распределении приблизительно 68% результатов наблюдений оказываются в пределах одного среднего квадратичного отклонения от среднего значения и 98% - в пределах двух средних квадратичных отклонений.

Среднее квадратичное отклонение может сказать нам, не имеем ли мы дело со случаем "голова-в-духовке-ноги-в-холодильнике", когда любые рассуждения о среднем являются бессмысленными. Среднее квадратичное отклонение может также сказать нам, что 25 550 манипуляций с камешками Якоба позволяют весьма точно оценить соотношение числа черных и белых камешков в кувшине, поскольку относительно малое число наблюдений будет сильно отличаться от среднего значения.

Де Муавр был поражен закономерностью, которая проявлялась с увеличением числа случайных и независимых наблюдений; он относил эту упорядоченность к предписаниям Всемогущего. Это приводит к мысли, что при правильно выбранных условиях измерения можно в самом деле преодолеть неопределенность и приручить риск. Используя курсив, чтобы подчеркнуть значение сказанного, де Муавр так подытожил свои исследования:

"Случай порождает Отклонения от закономерности, однако бесконечно велики Шансы, что с течением Времени эти Отклонения окажутся пренебрежимо ничтожными относительно повторяемости того Порядка, который естественным образом является результатом БОЖЕСТВЕННОГО ПРЕДНАЧЕРТАНИЯ".

***

Вкладом де Муавра в математику был инструмент, который сделал возможной оценку вероятности того, что заданное число наблюдений попадет в некоторую область вокруг истинного отношения. Этот результат нашел широкое практическое применение.

Например, все производители опасаются того, что результатом сборки может оказаться бракованная продукция, которая дойдет до потребителей. Стопроцентное качество в большинстве случаев практически невозможно - наш мир, похоже, непоправимо враждебен совершенству.

Представьте себе директора булавочной фабрики, который старается добиться, чтобы бракованные булавки встречались не чаще, чем в 10 случаях из 100 000, то есть чтобы брак составлял не более 0,01% от объема производства. Для контроля дел он проводит обследование произвольной выборки из 100 000 сошедших с конвейера булавок и выясняет, что у 12 нет головок - на 2 больше, чем он надеялся получить в среднем по всей производимой продукции. Насколько значима эта разница? Какова вероятность найти 12 бракованных булавок из выборки объемом в 100 000, если средний процент брака составляет 10 бракованных булавок на каждый 1 000 000? Нормальное распределение и среднее квадратичное отклонение де Муавра дают ответ на этот вопрос.

Но обычно вопрос ставится по-иному. Чаще никто точно не знает, сколько именно бракованных изделий в среднем выпускает фабрика. Вопреки благим намерениям действительная доля брака может оказаться в среднем выше, чем 10 из 100000. Что скажет выборка из 100000 булавок о вероятности того, что для всей выпускаемой продукции брак в среднем составляет 0,01%? Насколько более точные сведения можно получить из выборки объемом в 200 000 булавок? Какова вероятность того, что процент брака окажется в пределах от 0,009% до 0,011%? А в пределах от 0,007% до 0,013%? Какова вероятность того, что одна наугад взятая булавка окажется бракованной?

Здесь исходными данными являются 10 булавок, 12 булавок, 1 булавка, а вероятность оказывается искомой величиной. В такой постановке задача сводится к вычислению так называемой обратной вероятности: какова вероятность того, что по всей произведенной продукции брак составляет в среднем 0,01%, если в выборке из 100000 булавок оказалось 12 бракованных?

***

Одно из наиболее эффективных решений этой задачи было предложено пастором Томасом Байесом, который родился в 1701 году и жил в Кенте. Байес был нонконформистом. Он отвергал большинство обрядов англиканской церкви, перенятых ею от католической после отделения от Рима во время правления Генриха VIII.

Хоть Байес и был членом Королевского общества, известно о нем немного. В одном довольно скучном и безликом учебнике статистики он характеризуется как "загадочная личность". При жизни он не издал ни одного сочинения по математике и оставил только две работы, которые были опубликованы после его смерти, но не смогли обратить на себя должного внимания.

Тем не менее одна из этих работ, "О решении проблемы в теории случайностей" ("Essay towards Solving a Problem in the Doctrine of Chances"), оказалась замечательно оригинальным произведением, которое обессмертило имя Байеса среди статистиков, экономистов и других представителей социальных наук. В нем заложены основы современных методов статистического анализа, начало работы над которыми было положено трудами Якоба Бернулли.

После смерти Байеса в 1761 году, согласно составленному за год до того завещанию, рукопись этой работы и сто фунтов стерлингов достались "Ричарду Прайсу, в настоящее время, как я полагаю, пастору в Ньюингтон-Грин". Любопытно, что у Байеса были столь неверные сведения о Прайсе, фигуре тогда намного более важной, чем простой священник в маленьком городке графства Кент.

Ричард Прайс был человеком высоких нравственных принципов, страстным поборником свободы вообще и свободы вероисповедания в частности. Он был убежден, что свобода дана человеку Богом и поэтому является непременным условием нравственного поведения, и утверждал, что лучше быть свободным грешником, чем рабом. В 1780 году он написал книгу об американской революции с чрезвычайно длинным названием: "Соображения о значении американской революции и путях превращения ее во всемирное благо" ("Observations on the Importance of the American Revolution and the Means of Making it a Benefit to the World"), в которой выразил свою веру в то, что революция была предначертана Богом. Рискуя собой, он заботился о перемещенных в Англию американских военнопленных. Он был другом Бенджамина Франклина и хорошо знал Адама Смита. Смит отсылал Франклину и Прайсу некоторые главы книги "О богатстве народов" ("The Wealth of Nations") для чтения и критических замечаний.

Одна разновидность свободы беспокоила Прайса: свобода заимствования. Он был глубоко озабочен величиной национального долга Британии, выросшего в результате войн с Францией и с колонистами Северной Америки. Он сетовал по поводу непрекращающегося накопления государственного долга и называл его "величайшим национальным злом".

Но Прайс был не просто священником и страстным поборником свободы. Он известен также как математик, который за работы в области теории вероятностей был принят в члены Королевского общества.

В 1765 году три человека из страховой компании, носящей название "Общество справедливости" (Equitable Society), пригласили Прайса помочь им в составлении таблиц смертности, на основе которых должны были определяться размеры сборов при страховании жизни и продаже пожизненной ренты. После изучения среди прочих трудов Галлея и де Муавра Прайс опубликовал по этому вопросу две статьи в "Philosophical Transactions"; его биограф Карл Кон сообщает, что голова Прайса поседела за одну ночь от напряжения при работе над второй из этих статей.

Прайс начал с изучения записей в лондонских регистрационных книгах, но математическое ожидание продолжительности жизни, получаемое на основе этих записей, оказалось значительно ниже имевшихся данных о смертности. Тогда он обратился в графство Нортгемптон, где записи велись более аккуратно, чем в Лондоне. Он опубликовал результаты своих изысканий в 1771 году в книге, озаглавленной "Заметки о страховых выплатах" ("Observations on Reversionary Payments"), которая оставалась катехизисом страховщиков до конца XIX столетия. Эта работа принесла ему славу основоположника страховой статистики как комплекса вероятностных методов, применяемых ныне всеми страховыми компаниями в качестве основы исчисления сборов и выплат.

Однако в работе Прайса были серьезные, весьма дорогостоящие ошибки, частично обусловленные погрешностями исходных данных, которые не охватывали большое число незарегистрированных рождений. Более того, он завысил коэффициенты смертности для ранних возрастов и занизил их для старших, а его оценки величины миграции населения в Нортгемптон и из него оказались неточными. Наиболее серьезные последствия имело занижение ожидаемой продолжительности жизни, что привело к значительному завышению сборов при страховании жизни. "Общество справедливости" обогатилось на этой ошибке, а британское правительство, использовавшее те же таблицы для определения выплат покупателям пожизненной ренты, понесло значительные убытки.

***

Через два года после смерти Байеса Прайс послал копию его "очень остроумной" работы некоему Джону Кантону, другому члену Королевского общества, с сопроводительным письмом, дающим представление о намерениях, с которыми Байес ее писал. Впоследствии в 1764 году Королевское общество опубликовало ее в "Philosophical Transactions", но и это не помешало новаторской работе Байеса прозябать в безвестности в течение двадцати лет.

Здесь приводится постановка Байесом задачи, которую он пытался решить:

ЗАДАЧА

Дано: число случаев [в выборке], в которых некое событие наступило, и число случаев, в которых оно не наступило.

Требуется определить: вероятность того, что вероятность наступления события в одном испытании [в генеральной совокупности] находится в некоем заданном интервале значений.

Поставленная здесь задача в точности обратна задаче, поставленной Якобом Бернулли примерно шестьюдесятью годами ранее (с. 136). Байес задается вопросом, как определить вероятность того, что событие будет иметь место, при том что мы знаем только, что оно в определенном числе случаев наступило и в некоем другом числе случаев не наступило. Другими словами, булавка может оказаться бракованной или качественной. Если мы обнаружим десять бракованных булавок в выборке из ста, какова вероятность, что во всей совокупности булавок - не только в выборке из ста - процент брака окажется в интервале между 9 и 11%?

Сопроводительное письмо Прайса Кантону показывает, как далеко за одно столетие продвинулся анализ вероятности в практике принятия решений. "Каждый здравомыслящий человек, - пишет Прайс, - поймет, что поставленная здесь задача ни в коем случае не является простым упражнением в области теории случайностей, но требует решения в целях построения прочного основания для всех наших суждений относительно предыдущих событий и выяснения вероятности последующих". Он далее указывает, что ни Якоб Бернулли, ни де Муавр не поставили вопрос именно таким образом, хотя де Муавр и охарактеризовал трудности в получении своего собственного решения как "наибольшие из всех, какие можно ожидать в теории случайностей ".

Для доказательства своей точки зрения Байес использовал не очень подходящий для диссидентствующего священника пример - бильярд. Запущенный по бильярдному столу шар где-то останавливается и остается на месте. Затем другой шар многократно запускается таким же образом, и подсчитывается число случаев, когда он останавливается справа от первого. Это "число случаев, когда неопределенное событие наступило", - успех. Неуспех - это число случаев, когда событие не наступило, то есть шар оказался слева от первого. Вероятность местонахождения первого шара - единичное испытание - следует вывести из "успеха" или "неуспеха" второго.

Важнейшее применение подхода Байеса заключается в использовании новой информации для уточнения вероятности, основанной на старой информации, или, пользуясь языком статистики, сравнении апостериорной вероятности с априорной. В случае с бильярдными шарами положение первого шара представляет собой априорную, а многократные оценки его местонахождения повторяющимися запусками второго шара - апостериорную вероятность.

Процедура пересмотра выводов относительно старой информации по мере получения новой имеет источником философскую точку зрения, делающую достижения Байеса чрезвычайно современными: в динамичном мире в условиях неопределенности нет однозначных ответов. Математик А. Ф. М. Смит (Smith) это очень хорошо сформулировал: "Каждая попытка научно обосновать ответы, возникающие в ситуации сложной неопределенности, является, на мой вкус, тоталитарной пародией на считающийся разумным процесс познания".

Хотя из-за сложности байесовского подхода детальное рассмотрение его здесь неуместно, пример типичного применения его приведен в конце этой главы.

***

Важнейшей отличительной особенностью всех описанных в этой главе научных достижений является смелая мысль, что неопределенность может быть измерена. Неопределенность означает, что значение вероятности неизвестно; перефразируя высказывание Хакинга об определенности, можно сказать, что нечто является неопределенным, если наша информация верна, а событие не происходит или если наша информация неверна, а событие происходит.

Якоб Бернулли, Абрахам де Муавр и Томас Байес показали, как вычислять величину вероятности на основании эмпирических фактов. В этих достижениях впечатляют живость ума, проявленная в постановке вопросов, и смелость, с которой он дерзко атакует неизвестное. Де Муавр не скрывал восхищенного удивления перед собственными результатами, когда сослался на БОЖЕСТВЕННОЕ ПРЕДНАЧЕРТАНИЕ. Он любил такого рода выражения. В другом месте у него читаем:

"Если бы мы не ослепляли себя метафизической пылью, то могли бы коротким и очевидным путем прийти к познанию великого СОЗДАТЕЛЯ и ВСЕДЕРЖИТЕЛЯ всего сущего".

Мы уже основательно углубились в XVIII столетие, когда англичане считали познание высшей формой человеческой деятельности. Это действительно было время, когда ученые стряхнули со своих глаз метафизическую пыль. Не было больше препятствий для исследования непознанного и созидания нового. Огромные успехи в освоении природы риска, достигнутые до 1800 года, дали мощный толчок науке наступающего столетия, и в Викторианскую эпоху исследования в этом направлении получили дальнейшее развитие.

Приложение

Назад Дальше