Завод без людей - Александр Штейнгауз 7 стр.


Механика - великая наука! Она помогла объяснить и понять научные и технические завоевания человечества, сделанные до того времени. Ведь они все, хоть и бессознательно, основывались на законах механики. Но механика не только объяснила прошлые открытия и достижения, она помогла сознательно добиваться новых. Все изобретения, все новые машины, станки, огнестрельное оружие, строительные сооружения - все, что создавалось людьми в те годы, могла объяснить механика. Законам механики подчинялись не только наши, земные, явления, но и все известные явления, наблюдавшиеся астрономами. Впервые в истории стало возможным производить математический расчет действия машин и сооружений, рассчитывать их отдельные узлы и элементы. Машины стали строить более надежными, легкими и, главное, точными. Механические устройства стали распространяться повсеместно. Строились корабли, железные дороги, мосты, невиданных дотоле размеров здания, туннели, домны, шахты, огромные заводы. Ручные орудия труда все более и более заменялись машинами и механизмами.

Словом, казалось, что вся вселенная может быть объяснена законами механики. И действительно, все, что наблюдали ученые, все, что ни создавала техника в те годы, все подчинялось этим законам, а если и некоторые факты не подчинялись, то это пока еще не вызывало ни тревоги, ни сомнений в универсальности механики. Казалось, что механика рано или поздно сумеет объяснить и эти непокорные явления.

Что же способствовало столь бурному развитию механики?

Мы знаем, что толчком к ее расцвету послужила промышленная революция, начавшаяся с изобретения прядильных и ткацких машин и паровой машины. Мы также знаем с вами, какую роль в жизни человечества сыграло открытие и применение металлов. Бронзу, медь, золото и железо люди открыли очень давно. К началу промышленной революции были известны и использовались и многие другие металлы. Но их, далее железа, не требовалось особенно много. Железо главным образом шло на изготовление лемехов, колесных осей, подков, разнообразного инструмента, оружия, корабельных якорей, гвоздей и т. п. До начала промышленной революции редко ощущалась нехватка в железе.

Промышленная революция и в этой области вызвала громадные изменения, потому что без достаточного количества железа, чугуна и стали она попросту не могла бы развиваться. Если первые машины - ткацкие станки и прядильные машины - с грехом пополам можно было бы делать из дерева, то паровой двигатель мог быть выполнен только из металла, и не любого, а самого прочного и устойчивого - из стали. То же самое можно сказать и о железной дороге, название которой говорит само за себя, и о многих других сооружениях и машинах.

Металл сразу потребовался в громадных количествах: котлы, паровые машины, паровозы, рельсы, пароходы, всякого рода станки и машины начали выделываться из металла. И здесь такую же важную роль, как в свое время бронзе и железу, пришлось сыграть стали.

Применение стали, особенно при изготовлении машин, станков, инструмента, позволило резко улучшить машины, повысить точность и качество изготовления продукции. Не менее важную роль применение стали и повышение точности и качества изготовления машин сыграли в дальнейшем усовершенствовании двигателей. В 1884 году в Англии Ч. Парсонс и независимо от него в Швеции в 1889 году Г. Лаваль разработали паровые турбины. Первые паровые турбины работали при очень высоких оборотах (30 тысяч об/мин турбина Лаваля и 18 тысяч об/мин турбина Парсонса). Кроме того, они сначала не были достаточно экономичными. Широко они стали применяться позже, в начале нашего века.

Появились и другие тепловые двигатели, так называемые двигатели внутреннего сгорания. Само название этих двигателей говорит о том, что топливо, отдавая свою энергию, сгорает в самих двигателях, а не в топке котла, вне двигателя, как это было в паровых двигателях.

Надо сказать, что двигатели внутреннего сгорания были самыми первыми на земле тепловыми двигателями. Только применялись они не в промышленности, а в военной технике. Впервые двигатель внутреннего сгорания был изобретен в глубокой древности в Китае. Это- ракета. Применялась она главным образом для фейерверков. Позднее ракету использовали для военных целей в Индии, в России. Однако до сороковых годов нашего века ракетный двигатель интересовал в основном ученых, а техника обходилась без него. Зато уже с очень давних времен широко используется другой двигатель внутреннего сгорания, имеющийся в любом виде огнестрельного оружия, от старинной аркебузы или пищали до современного дальнобойного орудия.

Ведь что такое двигатель внутреннего сгорания? Это такой двигатель, в котором энергия или работа получается путем сжигания топлива (будь то порох или бензин) в специальных рабочих камерах. У пушки или винтовки такой рабочей камерой является ствол, а у наиболее распространенных двигателей внутреннего сгорания, поршневых двигателей, - цилиндр.

Ни ракетный двигатель, ни двигатель "огнестрельный" до сих пор не нашли широкого применения в промышленности, хотя бы потому, что очень трудно регулировать мощность и управлять такими двигателями. Зато поршневые двигатели применяются повсеместно. И, говоря о двигателях внутреннего сгорания, чаще всего имеют в виду именно поршневые двигатели, хотя, кроме них, есть еще и газовая турбина и некоторые другие типы.

Идея создания двигателя внутреннего сгорания для промышленности зародилась в годы, предшествовавшие промышленной революции, когда уже ощущались все недостатки водяных двигателей. Первый тепловой двигатель внутреннего сгорания был предложен X. Гюйгенсом, известным нам создателем волновой теории света и значительными усовершенствованиями в часовом деле. Занимался Гюйгенс и тепловым двигателем, который он называл "пороховой машиной". Действительно, пороховая машина была основана на том же принципе, что и огнестрельное оружие. Только вместо ствола у пороховой машины был цилиндр, а вместо ядра или пули - поршень. Построить такую машину в 1688 году безуспешно пытался работавший одно время помощником у Гюйгенса Д. Папен.

Затем на время о двигателях внутреннего сгорания словно забыли: появилась паровая машина. Но в начале XIX века снова стали делаться попытки создать двигатель внутреннего сгорания. И, наконец, в 1860 году французский механик Э. Ленуар построил первый двухтактный газовый двигатель. По конструктивным принципам этот двигатель очень напоминал паровую машину, и экономичность у него была маленькая.

Поэтому уже в 1867 году, всего через семь лет, немецкие изобретатели Н. Отто и Э. Ланген создали более совершенный газовый двигатель, а еще через одиннадцать лет (в 1878 году) тот же Отто предложил новый, гораздо более совершенный, четырехтактный двигатель.

Однако все эти двигатели работали на газовом топливе, сперва на светильном, а потом на генераторном газе. Такое топливо неудобно в пользовании, и качество у него низкое. Поэтому двигатели внутреннего сгорания все еще не были в большом ходу. Только после перевода двигателей на жидкое топливо, сперва на легкое, а потом и на тяжелое, двигатели получили всеобщее признание.

Один из первых бензиновых двигателей с карбюратором был построен в восьмидесятые годы прошлого столетия моряком русского флота О. С. Костовичем. Двигатель был клапанный, восьмицилиндровый и предназначался для установки в дирижабле. Он имел очень малый по тем временам удельный вес - три килограмма на одну лошадиную силу.

Все мы знаем и о так называемых двигателях Дизеля, или, как их часто называют ученые и инженеры, двигателях с воспламенением от сжатия. Начало этим двигателям положил в самом конце прошлого столетия, в 1897 году, талантливый немецкий инженер Р. Дизель.

Двигатель, разработанный самим Дизелем, не был совершенным. И, прежде чем он получил широкое распространение, его пришлось значительно улучшать. Большие заслуги в этом деле имеют русские инженеры, которые на заводе Нобеля в Петербурге (теперь этот завод называется "Русский дизель") значительно улучшили конструкцию двигателя. Много усовершенствований в дизель ввели наши инженеры и в последующие годы.

В наши дни дизели - очень надежные и очень распространенные двигатели. Они применяются и на транспорте, в теплоходах и тепловозах, и приводят в движение электрические генераторы, устанавливаются они и на мощных автомобилях и тракторах. Известно, например, что по выпуску дизельных тракторов Советский Союз стоит на первом месте в мире.

Изобретение и распространение двигателей внутреннего сгорания определило развитие необыкновенно важной отрасли промышленности - нефтяной и нефтеперерабатывающей. О том, как велико в нашей сегодняшней жизни значение двигателей внутреннего сгорания, вы можете судить по политике таких стран, как США и Англия, которые в борьбе за нефть применяют все средства, вплоть до самых неприглядных.

Мы с вами уже знаем, что развитие техники направлено на повышение продуктивности человеческого труда, на удовлетворение постоянно расширяющихся и растущих потребностей человеческого общества. Техника всегда развивается одновременно по нескольким путям, и среди них очень важное значение имеют следующие:

Создание новых, более совершенных, более мощных к стойких двигателей, способных выполнять разнообразную работу и заменять мускульную силу человека в различных областях его труда.

Создание устройств, заменяющих или обостряющих человеческие чувства, что позволяет лучше и точнее проводить производственные процессы.

И очень близкий, часто не отличимый путь - создание устройств, позволяющих измерять различные величины и свойства предметов и процессов.

Есть еще один путь. Это путь создания таких устройств, которые могли бы управлять некоторым процессом без вмешательства человека. Такие устройства должны заменить собой не силу человека, не его чувства, а его мозг.

Сочетание всех названных путей и приводит в конце концов к созданию нового, особого вида машин, которые могут выполнять всю работу или какую-то ее часть без участия человека. Такие машины, как мы знаем с вами, называются машинами-автоматами.

Первыми автоматами были механические автоматы: часы, золотник, центробежный регулятор. Регулятор уровня воды в резервуаре, изобретенный И. И. Ползуновым, и предохранительный клапан парового котла - тоже устройства автоматики. Сюда же может быть отнесено и первое автоматическое оружие: пулемет, созданный в 1883 году, самодвижущаяся торпеда.

Но все-таки в те годы, когда в мире господствовала механика, автоматов было очень немного. И не потому, что механика не могла создавать их. Совсем нет. Все дело заключалось в том, что вплоть до начала нашего столетия только в очень редких случаях техника не могла обойтись без автоматических устройств.

Но заслуги механики прошлого века и без того огромны.

Машиностроение, промышленность, которая дает жизнь всем остальным отраслям техники, единственная в своем роде промышленность, потому что только она может создавать себя самое - вот главнейшая задача, решавшаяся и решаемая в настоящее время механикой.

Эра электричества

ам я - инженер-радиотехник. Занимаюсь я разработкой разной аппаратуры. И, конечно, радио и электротехника мне ближе всего, и больше всего я люблю радиотехнику. Я вам рассказывал, что я, как и все мои сверстники, как и вы, мечтал о многих и самых разнообразных жизненных занятиях, от путешественника и археолога до радиотехника. Вы по себе и своим старшим товарищам знаете, что выбор специальности чаще всего все-таки оказывается делом случая. Конечно, одни никогда и ни при каких условиях не пойдут в технику или математику, других калачом не заманишь в медицину или педагогику, третьих не тянет в искусство. Но всегда имеется очень широкая область, будь то медицина, биология, механика или та же электротехника, внутри которой тоже имеется огромный выбор.

Но все-таки, когда я учился в школе и даже в институте, об электротехнике и о радиотехнике, об их месте в промышленности я имел очень неполное представление, а вернее, устаревшее. Я думал, электротехника и радиотехника, несмотря на то что они основаны на общих физических законах, - отдельные и мало соприкасающиеся области техники. Что же касается механики, то она казалась мне и вовсе не связанной с электричеством и тем более с радиотехникой.

Ведь, говоря об электротехнике, мы обычно представляем себе мощные генераторы, электродвигатели, прожектора, осветительные лампы, электропечи, мощные трансформаторы и различные бытовые приборы.

Говоря о радиотехнике и электронике, мы представляем себе радиоприемники, телевизоры, радиостанции, радиолокаторы, электронные лампы и телевизионные кинескопы.

Так думал и я даже в первые поды войны, тем более, что о такой важной области радио, как радиолокация, в те годы знали только очень немногие люди.

Что касается механики, то я знал, что она, конечно, широко использовалась и в электротехнике и даже в радиотехнике. Но только как подсобный работник. Радиоинженеру нужно создать устройство для излучения радиоволн. Пожалуйста! Это очень просто! Радиоинженер смотрит в свои радиокниги, берет логарифмическую линейку, исписывает формулами и цифрами кипу листов бумаги и, наконец, изрядно помучившись, выдает задание механику. А задание, прямо скажем, не простое. Для того чтобы длинноволновую радиостанцию было слышно во всей Европе, нужно, чтобы высота антенны была 300–500 метров! Инженер-механик хватается за голову, а может быть, и за сердце, но ничего не поделаешь: раз радиоинженер говорит, значит, так оно и есть. Здесь радиоинженер хозяин, а механик только помощник.

Такую башню для установки передающих телевизионных антенн скоро воздвигнут в Москве. Ее высота будет достигать 500 метров.

То же самое и в электротехнике. После изобретения генераторов переменного тока и после разработки методов расчета таких генераторов инженер-электрик вполне мог бы провести электрический расчет генератора на самые колоссальные мощности; лишь бы механики смогли создать надежную, экономичную конструкцию.

Отношения же между электротехникой и радиотехникой казались мне такими же простыми. Электротехника дает ток, и работают радиостанции, радиоприемники, работают охладительные насосы и вентиляторы, на антеннах горят красные предупредительные огни. Все в порядке.

Такое представление отчасти было правильным, но только устарелым. Оно как раз начинало стареть, когда я кончал школу и начинал учиться в институте, то есть в конце тридцатых, начале сороковых годов. В наши дни во многих случаях положение резко изменилось. Теперь частенько инженер-механик предъявляет свои требования к электротехнике и радиотехнике. Да такие, что у электриков и радистов перехватывает дыхание.

Вы, может, думаете, что из-за этого вражда какая-нибудь возникает между ними? Нет, конечно! Наоборот, если раньше механики по основной своей линии мало нуждались в электротехниках и радиотехниках, если электротехнике и особенно радиотехнике механика нужна была только как подсобная техника, то теперь все эти три важнейшие отрасли техники завязались в такой плотный узел, что ни один важный вопрос механики не решается без помощи электричества и радио; ни один важный вопрос в электротехнике не может быть решен без помощи механика и радиста, а радист для создания новых радиоустройств не обойдется без механики и электротехники.

Но если это так, если еще вспомнить успехи других наук, почему же можно наше время назвать эрой электричества? Вопрос этот очень правильный, но коротко на него не ответишь.

Давайте-ка сначала вспомним, как шло развитие науки и техники в более раннюю эпоху. Сперва техника овладела несколькими источниками механической энергии: энергией ветра, энергией воды. Были созданы и соответствующие двигатели: ветряной и водяной. Уровень и возможности промышленности соответствовали возможности этих двигателей. Потом техника научилась превращать тепловую энергию в механическую; появилась паровая машина. К какому огромному толчку в развитии промышленности привело освоение энергии огня и изобретение паровой машины, вы уже знаете.

Так же дело складывалось и в электричестве. Сперва электричеством интересовались только немногие. Но вот в 1799 году А. Вольта создал первый источник электрической энергии - вольтов столб. В течение долгого времени он был единственным источником электрического тока. Именно "посредством огромной наипаче баттереи, состоявшей иногда из 4200 медных и цинковых кружков", удалось В. В. Петрову открыть то явление, которое мы называем "электрической дугой". Именно с помощью вольтова столба было открыто Г. Эрстедом взаимодействие электрического тока и магнита, а М. Фарадей открыл законы электролиза.

Постепенно химические источники электричества, то есть такие, в которых осуществлялось преобразование химической энергии в электрическую, были значительно усовершенствованы. И хотя они продолжали оставаться очень дорогими, начали делаться попытки применить электрическую энергию для создания двигателей на новом виде энергии, на электрической энергии.

Одним из первых электрических двигателей был двигатель русского ученого Б. С. Якоби. Над этим двигателем Якоби работал около трех лет. В 1838 году при содействии адмирала Крузенштерна Якоби получил возможность установить свой двигатель на шлюпке. Двигатель питался электрическим током от 320 гальванических элементов. Летом 1838 года лодка с пассажирами поплыла по Неве.

Но все-таки электрический двигатель не мог еще соперничать с тепловым. И не только потому, что был несовершенным, а потому, что источники электрической энергии были громоздки, дороги и еще менее пригодны чем сам электрический двигатель.

Зато в области связи даже такие несовершенные источники, как гальванические элементы, позволили создать такие удобства, которые искупали дороговизну и низкие качества источников. Даже если бы они стоили во много раз дороже, их все равно выгодно было бы применять.

Первый в мире электромагнитный телеграф был построен в России. Он был изобретен П. Л. Шиллингом. В 1832 году уже действовала телеграфная линия между Зимним дворцом и министерством путей сообщения.

Знаменитый телеграф, изобретенный профессором изящных искусств С. Морзе в 1837 году, после долгих мук и лишений, испытанных изобретателем, начал действовать только в 1844 году на линии между Вашингтоном и Балтиморой. Зато в последующие годы он стал необыкновенно быстро распространяться.

В 1876 году переехавший на жительство в Соединенные Штаты Америки из Шотландии Г. Белл подал изобретательскую заявку на "говорящий телеграф". Заявка была сделана в марте, а в августе в Америке были включены первые 778 телефонов.

Назад Дальше