Предположим, что Ящерка Билль говорит правду. Тогда его показания на суде истинны. Значит, либо Мартовский Заяц, либо Соня говорит правду (возможно, что правду говорят оба). Предположим, что правду говорит Мартовский Заяц. Тогда кухарка должна говорить правду (напомним, что, как показал на суде Мартовский Заяц, кухарка и Чеширский Кот говорят правду). С другой стороны, если Соня говорит правду, то кухарка должна опять-таки говорить правду (ибо так утверждала в своих показаниях на суде Соня). Таким образом, и в том и в другом случае (говорит ли правду Мартовский Заяц или Соня) кухарка должна говорить правду. Но либо Мартовский Заяц, либо Соня говорит правду. Следовательно, в любом случае кухарка должна говорить правду. Это доказывает, что кухарка говорит правду (разумеется, в предположении, которое мы разделяем, что Ящерка Билль сказал правду). Кроме того, Мартовский Заяц показал (и это подтвердила кухарка), что Чеширский Кот говорит правду, а Соня показала (и ее слова также подтвердила кухарка), что Гусеница говорит правду,… Следовательно, либо Чеширский Кот, либо Гусеница говорит правду (поскольку либо Мартовский Заяц, либо Соня говорит правду; если правду говорит Мартовский Заяц, то не лжет Чеширский Кот; если же правду говорит Соня, то не лжет Гусеница). Но в своих показаниях на суде Болванщик утверждал, что либо Чеширский Кот, либо Гусеница говорит правду, поэтому сам Болванщик говорит правду. Значит, и кухарка, и Болванщик говорят правду. Именно это и утверждал Валет Червей. Таким образом, Валет Червей говорит правду (разумеется, при условии, что Ящерка Билль говорит правду).
Итак, мы доказали, что если Ящерка Билль говорит правду, то Валет Червей не может не говорить только правду. Значит, Белый Кролик лгал, когда утверждал, что Билль говорит правду, а Валет лжет. Итак, Белый Кролик – лжец.
Обратимся теперь к показаниям Алисы (их истинность не вызывает сомнений). Алиса сказала, что Белый Кролик и Герцогиня либо оба говорят правду, либо оба лгут. Говорить правду они оба не могут (так как Белый Кролик лжет). Следовательно, они могут только лгать вдвоем. Но коль скоро Герцогиня лжет, то крендели украл не кто иной, как Грифон.
Глава 3
14. Гусеница и Ящерка Билль. Гусеница считает, что и она, и Ящерка Билль не в своем уме. Если бы Гусеница была в здравом уме, то мнение о том, что и она, и Ящерка Билль не в своем уме, было бы ложно. Следовательно, Гусеница (будучи в здравом уме) не могла бы придерживаться этого ложного мнения. Значит, Гусеница не в своем уме. Но коль скоро она не в своем уме, то ее представление об окружающих превратно. Следовательно, неверно, что и Гусеница, и Ящерка Билль не в своем уме. Значит, другой партнер (Ящерка Билль) должен быть в здравом рассудке.
Итак, Гусеница не в своем уме, а Ящерка Билль в здравом рассудке.
15. Кухарка и Кот. Если бы кухарка была не в своем уме, то ее мнение о том, что по крайней мере один из двух – либо она, либо Чеширский Кот – не в своем уме, было бы истинным. Но тогда мы имели бы человека, который, будучи не в своем уме, придерживается здравых суждений, что противоречит условиям задачи. Следовательно, кухарка должна быть в здравом рассудке. А поскольку она в здравом уме, то ее суждения истинны, и поэтому один из двух – либо она, либо Чеширский Кот – не в своем уме. Поскольку этот "один" не кухарка, им должен быть Чеширский Кот.
Итак, кухарка в здравом рассудке, а Чеширский Кот не в своем уме.
16. Лакей-Лещ иЛягушонок. Приведенные в условиях задачи сведения не позволяют определить, в здравом ли рассудке или не в своем уме Лакей-Лещ, но мы докажем, что Лягушонок должен быть в здравом рассудке. Будем рассуждать следующим образом.
Имеются две возможности: либо Лакей-Лещ в здравом рассудке, либо он не в своем уме. Покажем, что и в том и в другом случае Лягушонок должен быть в здравом рассудке.
Предположим, что Лакей-Лещ в здравом рассудке. Тогда он судит обо всем правильно. Значит, Лягушонок действительно во всем схож с Лакеем-Лещом. Следовательно, Лягушонок в здравом рассудке.
С другой стороны, предположим, что Лакей-Лещ не в своем уме. Тогда он обо всем судит превратно, поэтому Лягушонок совершенно несхож с Лакеем-Лещом. Так как Лакей-Лещ не в своем уме, то Лягушонок в противоположность ему должен быть в здравом рассудке.
Итак, в любом случае (в здравом ли рассудке Лакей-Лещ или не своем уме) Лягушонок должен быть в здравом уме.
А что если бы Лакей-Лещ считал Лягушонка не во всем схожим, а во всем несхожим с собой? Каким был бы тогда Лакей-Лещ – в здравом рассудке или не в своем уме?
Ответ: Лягушонок в таком случае должен был быть не в своем уме. Доказательство этого утверждения я предоставляю читателю в качестве самостоятельного упражнения.
17. Король и Королева Бубен. Никто из этой августейшей четы не может думать о себе, что он не в своем уме. Действительно, человек в здравом рассудке знает в соответствии с истиной, что он в своем уме, а безумец ошибочно полагает, что он в своем уме. Следовательно, Королева в действительности не думает, что она не в своем уме. Значит, не в своем уме Король, который считает, что Королева так думает.
Данные задачи не позволяют утверждать что-либо относительно того, в своем ли уме Королева Бубен.
18. Мартовский Заяц, Болванщик и Соня. Предположим, что Болванщик в своем уме. Тогда он обо всем судит здраво. Значит, Мартовский Заяц не думает, что все три участника безумного чаепития в своем уме. Следовательно, Мартовский Заяц должен быть в своем уме потому, что если бы он был не в своем уме, то разделял бы ложное мнение о том, что все три участника безумного чаепития в своем уме. Но тогда, Соня, считающая, что Мартовский Заяц в здравом рассудке, сама должна быть в своем уме. Значит, все три участника безумного чаепития должны быть в своем уме. Как же в таком случае мог Мартовский Заяц не признавать истинным утверждение о том, что все три участника безумного чаепития в своем уме? Полученное противоречие доказывает, что предположение о том, будто Болванщик в своем уме, ложно: в действительности Болванщик должен быть не в своем уме.
Так как Болванщик должен быть не в своем уме, он судит обо всем превратно, и поэтому Мартовский Заяц думает, что все три участника безумного чаепития в здравом рассудке. Разумеется, Мартовский Заяц заблуждается (так как Болванщик не в своем уме), поэтому Мартовский Заяц также не в своем уме. Но тогда и Соня, считающая, что Мартовский Заяц в здравом рассудке, также не в своем уме.
Итак, все трое участников безумного чаепития не в своем уме (что, впрочем, не слишком удивительно!).
19. Грифон, Черепаха Квази и Омар. Прежде всего Грифон и Черепаха Квази должны быть "одинаковыми", то есть либо оба не в своем уме, либо оба в здравом рассудке, так как Черепаха Квази считает, что Грифон в своем уме. Если Черепаха Квази в здравом рассудке, то это означает, что Грифон в своем уме. Если же Черепаха Квази не в своем уме, то он судит обо всем превратно. Значит, Грифон в действительности не в здравом рассудке, а безумен. Таким образом, Грифок и Черепаха Квази оба не в своем уме.
Докажем теперь, что Омар не в своем уме. Будем рассуждать от противного: предположим, что он в своем уме. Тогда Омар обо всем судит здраво и, следовательно, Грифон действительно считает, что ровно один из троих (Грифон, Черепаха Квази и Омар) в своем уме. Но это невозможно, так как если Грифон в своем уме, то Черепаха Квази (равно как и Омар) в своем уме, поэтому утверждение о том, что ровно один из них в своем уме, ложно (так как в своем уме все трое). Следовательно, Грифон, будучи в здравом рассудке, так думать не мог. С другой стороны, если Грифон в своем уме, то утверждение о том, что ровно один из троих (а именно Омар, так как Черепаха Квази не в своем уме) в здравом рассудке, истинно. Но существо, которое не в своем уме, не может мыслить истинными суждениями. Следовательно, предположение о том, что Омар в своем уме, приводит к противоречию. Значит, Омар не может быть в здравом рассудке: он должен быть не в своем уме.
Итак, мы знаем, что Омар не в здравом рассудке. Значит, в действительности неверно, будто Грифон считает, что разумен ровно один из троих (Грифон, Черепаха Квази и Омар). Если Грифон не в своем уме, то Черепаха Квази также не в своем уме, и, таким образом, все трое не в своем уме. Следовательно, утверждение о том, что не в своем уме ровно один из троих, ложно. Это означает, что Грифон, будучи не в своем уме, должен принимать за истинные все ложные утверждения, в частности утверждение о том, что ровно один из троих в здравом рассудке, хотя, как мы уже доказали, он так не думает. Полученное противоречие показывает, что Грифон не может быть не в своем уме. Следовательно, Грифон в здравом рассудке и Черепаха Квази (будучи таким же безумным или здравомыслящим), как Грифон, должен быть в своем уме.
Ответ: Омар не в своем уме, Грифон и Черепаха Квази оба в здравом рассудке.
20. Король и Королева Червей. Королева Пик думает, что Король Пик думает, что она не в своем уме. Если она в здравом рассудке, то Король действительно думает, что она не в своем уме, а это означает, что не в своем уме должен быть Король. Если же Королева не в своем уме, то Король в действительности не думает, что она не в своем уме, а если бы он был в здравом рассудке, то думал бы. Поэтому и в этом случае Король не в своем уме. Итак, в любом случае Король должен быть не в своем уме. Что же касается Королевы Пик, то она может быть и в здравом рассудке, и не в своем уме.
21. Король и Королева Треф. Не может быть, чтобы Король (Треф) думал, что Королева (Треф) думает, что Король думает, что Королева не в своем уме. Действительно, предположим, что Король так думает. Тогда Королева думает, что Король думает, что она не в своем уме. Но, как было показано в предыдущей задаче, это означает, что не в своем уме Король. Таким образом, если Король в своем уме, то он не в своем уме. Следовательно, Король не может быть в своем уме – Король безумен. Значит, он превратно судит обо всем и Королева в действительности не думает, что Король думает, что она не в своем уме. Но Королева либо в своем уме, либо безумна. Если она в своем уме, то здраво судит обо всем. Значит, верно, что Король не думает, что она не в своем уме, поэтому Король думает, что Королева в здравом рассудке. Но тогда Король мыслит здраво, и мы опять приходим к противоречию: безумный Король мыслит в соответствии с истиной. С другой стороны, если Королева не в своем уме, то она судит обо всем превратно, поэтому Король в действительности думает, что она не в своем уме. Тем самым Король должен был бы быть в здравом рассудке, между тем как он не в своем уме. Итак, и в одном и в другом случае мы приходим к противоречию.
Оно доказывает просто невозможность такого положения, при котором Король думает, что Королева думает, что она не в своем уме. Таким образом, если бы Герцогиня задала Алисе логическую задачу, то это, несомненно, свидетельствовало бы о том, что Герцогиня не в своем уме. Но в действительности Герцогиня не задавала Алисе такой задачи. Она лишь спросила у Алисы:
– А что бы ты сказала, если бы я сообщила тебе, что…
22. Королева Червей. Все, что мы доказали в предыдущей задаче, применимо не только к Королю и Королеве Треф, но и к Королю и Королеве Червей. Действительно, невозможно, чтобы Король Червей думал, что Королева Червей думает, что Король Червей думает, что она не в своем уме. Так как Королева Червей действительно думает, что Король так думает, то она не в своем уме. Что же касается Короля, то данные задачи не позволяют определить, в своем ли он уме.
23. Додо, Попугайчик Лори и Орленок. Так как Лори думает, что Додо не в своем уме, то Лори и Додо совсем несхожи (если Лори в здравом рассудке, то Додо не в своем уме; если Лори не в своем уме, то Додо в действительности не безумец, а пребывает в здравом рассудке). Так как Орленок думает, что Додо в здравом рассудке, то Орленок совсем несхож с Лори (который думает, что Додо не в своем уме). Следовательно, Орленок схож с Лори. (То же самое можно доказать иначе: если Орленок в своем уме, то Додо в действительности в здравом рассудке, а если Орленок не в своем уме, то Додо в действительности не в здравом рассудке, а не в своем уме.) Следовательно, Орленок и Додо схожи между собой, а Лори несхож с ними обоими. Так как Лори несхож с Орленком, то Лори должен думать, что Орленок не в своем уме. Значит, Додо судит здраво, поэтому Додо в своем уме.
24. Валет Червей. Докажем, что если Семерка не в своем уме, то Шестерка должен быть в здравом рассудке и, следовательно, Валет Червей здраво рассудил, думая, что Шестерка и Семерка не могут быть оба не в своем уме.
Предположим, что не в своем уме Семерка. Тогда то, что Семерка думает о Пятерке, ложно, поэтому Пятерка в здравом рассудке. Следовательно, Пятерка судит обо всем здраво, поэтому Туз и Четверка либо оба не в своем уме, либо оба в здравом рассудке. Но Туз и Четверка не могут быть оба не в своем уме. (Если бы Четверка был не в своем уме, то он судил бы обо всем превратно. Тогда Тройка и Двойка были бы оба не в своем уме, между тем как безумие Тройки означало бы, что Туз скорее в здравом разуме, чем не в своем уме. Следовательно, если Четверка не в своем уме, то Туз должен быть в здравом рассудке, поэтому Туз и Четверка не могут быть оба не в своем уме.) Таким образом, Туз и Четверка оба в здравом рассудке. А так как Четверка в здравом рассудке, Тройка и Двойка не могут быть оба не в своем уме – по крайней мере один из них в здравом рассудке. Но Тройка не может быть в здравом рассудке, так как он думает, что Туз не в своем уме. Следовательно, в здравом рассудке должен быть Двойка. Значит, Туз и Двойка оба в здравом уме. Стало быть, Шестерка судит здраво, поэтому он должен быть в здравом уме.
Итак, мы доказали, что если Семерка не в своем уме, то Шестерка должен быть в здравом рассудке. Следовательно, не может быть, чтобы Семерка и Шестерка оба были не в своем уме. Так как Валет думает, что они не могут быть оба не в своем уме, сам Валет должен быть в здравом рассудке.
25. Оценка Грифона. В задаче 15 мы доказали, что кухарка в здравом уме. Следовательно, если то, о чем поведала Герцогиня Алисе, было правильно, кухарка была бы в здравом уме. Но Герцогиня сообщает Алисе, что кухарка считает, что она, Герцогиня, не в своем уме. Следовательно, Герцогиня должна была бы быть не в своем уме (поскольку кухарка, будучи в здравом уме, считает, что Герцогиня не в своем уме). Значит, если бы то, о чем Герцогиня рассказала Алисе, было истинно, то Герцогиня должна была бы быть не в своем уме, но тогда ее рассказ не соответствовал бы истине. Таким образом, если бы то, о чем поведала Герцогиня Алисе, было верно, то мы пришли бы к противоречию. Следовательно, то, о чем рассказала Герцогиня, неверно.
Заметим, кстати, что приведенное выше рассуждение отнюдь не предназначается для доказательства безумия Герцогини: у нас кет причин думать, что Герцогиня не в своем уме. Мы доказали лишь, что если бы ее история была правдива, то Герцогиня должна была бы быть не в своем уме. Следовательно, рассказанная Герцогиней история не соответствует истинному положению вещей. Но это отнюдь не означает, что Герцогиня обо всем судит превратно. Мы доказали лишь то, что кое о чем она судит превратно!
Глава 4
26. Сколько кренделей у каждого? Назовем одной порцией все крендельки, которые достались Соне, сколько бы их ни было. Тогда Соне досталась 1 порция. Мартовскому Зайцу досталось вдвое больше крендельков, чем Соне (потому что Соню Болванщик посадил на такое место, где крендельков было вдвое меньше, чем у Мартовского Зайца), то есть Мартовскому Зайцу досталось 2 порции. Сам Болванщик сел на такое место, где крендельков было втрое больше, чем у Мартовского Зайца, поэтому Болванщику досталось 6 порций. Так как у Болванщика оказалось 6 порций, а у Сони только 1 порция, Болванщику досталось на 5 порций больше, чем Соне. Кроме того, известно, что у Болванщика оказалось на 20 кренделей больше, чем у Сони. Следовательно, 5 порций крендельков соответствует 20 кренделькам и 1 порцию составляют 4 кренделька. Таким образом, Соне досталось 4 кренделька, Мартовскому Зайцу – 8 крендельков и Болванщику – 24 кренделька, то есть на 20 крендельков больше, чем Соне.
27. Возмездие. После того как Мартовский Заяц съел 5/16 кренделей, на тарелке осталось 11/16. Соня съела 7/11 оставшихся кренделей, то есть 7/11 от 11/16. Так как 7/11 × 11/16 = 7/16, Соня съела 7/16 всех кренделей. Вместе с Мартовским Зайцем, съевшим 5/16 всех кренделей, они съели вдвоем 7/16 + /16 = 12/16, то есть 12/16 всех кренделей. Болванщику они оставили 4/16, или 1/4, кренделей. Поскольку Болванщику досталось 8 кренделей, эти 8 кренделей составляют 1/4 всех кренделей. Следовательно, всего было 32 кренделя. От 32 кренделей Vie составляет 2 кренделя, а 5/16 – 10 кренделей. Следовательно, Мартовский Заяц съел 10 кренделей, после чего на тарелке осталось 22 кренделя. Затем Соня съела 7/11 от 22 оставшихся кренделей, что составляет 14 кренделей (так как 1/11 от 22 кренделей равна 2 кренделям, а 7/11 – 14 кренделям). На тарелке осталось 8 кренделей для Болванщика, так что все сходится.
28. Сколько фаворитов? Эта задача, обычно решаемая с помощью алгебры, очень проста, если подойти к ней следующим образом. Раздадим сначала по 3 кренделя каждому из 30 гостей Королевы. У нас останется 10 кренделей. При этом все нефавориты получат все крендели, которые им причитаются, а каждому из фаворитов еще предстоит получить по 1 кренделю. Следовательно, все оставшиеся крендели предназначаются фаворитам – по 1 кренделю каждому фавориту. Значит, фаворитов должно быть 10.
Проверка. Каждый из 10 фаворитов должен получить по 4 кренделя, что составляет 40 кренделей на всех фаворитов. Каждый из остальных 20 гостей получит по 3 кренделя, что составляет еще 60 кренделей. 40 + 60 = 100. Следовательно, наше решение правильно.
29. Крендели и крендельки. Так как каждый крендель стоит столько, сколько один кренделек, то 7 кренделей стоят столько же, сколько 21 кренделек, а 7 кренделей и 4 кренделька – столько же, сколько 25 крендельков. С другой стороны, 4 кренделя и 7 крендельков стоят столько, сколько 19 крендельков (так как 4 кренделя стоят столько же, сколько 12 крендельков). Таким образом, разность в стоимости 25 и 19 крендельков составляет 12 центов. Значит, 6 крендельков (25 – 19 = 6) стоят 12 центов, 1 кренделек – 2 цента, а 1 крендель – 6 центов.
Проверка. 4 кренделя и 7 крендельков стоят 24 + 14 = 38 центов, а 7 кренделей и 4 кренделька стоят 42 + 8 = 50 центов, то есть действительно на 12 центов дороже, чем в первом случае.