Журнал "Читаем вместе"
Глава 30
Десять причин моей ненависти к вашей теории
На дворе стоял 1981 год. Джон Шварц услышал в коридоре знакомый голос. "Эй, Шварц, ты нынче в скольких измерениях?" Это Фейнман, в те времена еще не "открытый", – культовая фигура лишь в разреженных сферах физики. Фейнман считал теорию струн сумасбродной. Шварц не возражал. Он уже привык, что к нему не относятся серьезно.
В тот год один старшекурсник представил Шварцу нового юного коллегу по фамилии Млодинов. Когда Шварц вышел, старшекурсник покачал головой. "Он лектор, а не настоящий профессор. Девять лет тут уже, а все никак постоянное место не получит". Смешок. "Работает над этой своей безумной теорией в двадцати шести измерениях". Вообще-то старшекурсник заблуждался: все начиналось, да, с теории двадцати шести измерений, но с тех пор она усохла до десяти. Все равно многовато.
Долгие годы теория кишела и другими "затруднениями", как их называют физики, – содержала предсказания, мало походившие на реальность. Отрицательными вероятностями. Частицами мнимых масс, движущимися быстрее света. И все равно Шварц оставался предан своей теории – ценой собственной карьеры.
Есть такой фильм, "10 причин моей ненависти", он нравится Алексею. Это кино о группе старшеклассников, в котором героиня выходит к доске и читает всему классу стихотворение о десяти причинах ее ненависти к бойфренду, хотя на самом деле это стихотворение о ее любви к нему. Легко представить Джона Шварца, читающего подобный опус, посвященный его теории: он любил ее и не бросал – вопреки, а иногда и благодаря ее трогательным маленьким погрешностям.
Шварц видел в струнной теории нечто такое, чего не замечали прочие: некую глубинную математическую красоту, которая, по его ощущениям, не могла быть случайна. То, что развитие теории давалось с большим трудом, никак его не обескураживало. Он пытался решить задачу, о которую преткнулся Эйнштейн и все остальные после него: согласование квантовой теории с относительностью. И простого решения не предвиделось.
В отличие от теории относительности, первая обобщенная квантовая теория не рождалась десятки лет после открытия Планком квантования энергетических уровней. Все изменилось в 1925–1927 годах благодаря усилиям австрийца Эрвина Шрёдингера и немца Вернера Гейзенберга. Независимо друг от друга они открыли – возможно, точнее будет сказать "изобрели" – элегантные теории, объяснявшие, как заменить ньютоновы законы движения другими уравнениями, включавшими принципы квантовой теории, выведенные за последние несколько десятилетий. Две новые теории получили названия волновой механики и матричной механики соответственно. Как и в случае специальной теории относительности, следствия квантовой теории были заметны лишь в отрыве от повседневной жизни, на сей раз – не из-за бешеной скорости, а из-за малости размеров. Поначалу не только связь между двумя теориями и теорией относительности оставалась невнятной, но и их отношения между собой. Математически они выглядели столь же разными, сколь их первооткрыватели.
Вообразите Гейзенберга – добропорядочного немца, в идеальном костюме и при галстуке, на столе у него полный порядок. Постепенно превратившись из "всего лишь националиста" в "умеренного пронациста", Гейзенберг возглавил работу Германии над атомной бомбой. После войны он пытался отбиваться от издевок методом "ну-да-но-я-на-самом-деле-это-все-через-силу". Гейзенберг создал свою теорию, активно опираясь на экспериментальные данные, в сотрудничестве с коллегой-физиком Максом Борном и будущим штурмовиком Паскуалем Йорданом. Вместе они разработали теорию, объединившую разрозненные физические правила и закономерности, наблюдавшиеся физиками более двадцати лет. Физик Мёрри Гелл-Манн описывал этот процесс так: "Они слепили это все воедино [из экспериментальных данных]. Выработали всякие правила сложения. Как-то раз Борн был в отпуске, а они при помощи этих правил переизобрели матричное умножение. Они и не знали, что это. Когда Борн вернулся, он, должно быть сказал: "Постойте, господа, это же теория матриц"". Физика привела их к рабочей математической структуре.
А вот Шрёдингера представьте Дон Жуаном физики. Он как-то писал: "Не бывало такого, чтобы женщина переспала со мной и не пожелала бы, как следствие, прожить со мной всю ее жизнь". Тут самое время и место заметить, что Гейзенберг, а не Шрёдингер предложил принцип неопределенности.
В своем подходе к квантовой теории Шрёдингер более полагался на математические рассуждения, нежели на экспериментальные данные, как у Гейзенберга. Представьте серьезного Шрёдингера – с легчайшей тенью улыбки на лице, лохматого, почти как Эйнштейн. Он задумчиво что-то пишет во вполне школьную тетрадку. Пошумите – и он, нимало не заботясь об этикете, засунет в каждое ухо по жемчужине, чтобы не отвлекаться. Но одной тишины его творчеству мало. Его волновая теория появится не во время протяженного монашеского отшельничества, а в разгар того, что принстонский математик Герман Вайль назвал "поздним эротическим всплеском его жизни".
Шрёдингер впервые записал свое волновое уравнение на свидании на горнолыжном курорте, пока его жена была в отъезде в Цюрихе. Говорят, что общество его загадочной визави питало его безумную плодовитость целый год. Такое сотрудничество обычно не отмечают в статьях; не было соавторов и у статей Шрёдингера. Имя этого конкретного соавтора, похоже, утеряно навсегда.
Хотя у Шрёдингера условия труда были получше, эквивалентность его волновой механики и матричной механики Гейзенберга вскоре доказал английский физик Поль Дирак. Единая теория, которую они представляли, получила нейтральное название квантовой механики. Дирак также расширил квантовую механику и включил в нее принципы специальной теории относительности (и разделил Нобелевские премии за квантовую механику 1932 и 1933 годов). Дирак, однако, общую теорию относительности в свои рассуждения не включил. И на то есть причина: сделать это невозможно.
Эйнштейн, родитель обеих теорий, отчетливо видел конфликт между ними. Хотя общая теория относительности глубоко ревизовала взгляды Ньютона на Вселенную, она сохранила одну из "классических" догм: определенность. Располагая нужной информацией о системе – хоть о вашем теле, хоть обо всей Вселенной, – вы могли бы, согласно парадигме Ньютона, рассчитать события будущего. А вот по квантовой теории это не так.
Именно это Эйнштейн терпеть не мог в квантовой механике. Сила чувства привела его к отвержению этой теории. Последние тридцать лет жизни он пытался расширить общую теорию относительности так, чтобы она включала все силы природы, и надеялся, что в процессе ему удастся разобраться с противоречием между теорией относительности и квантовой теорией. Не удалось. Через тридцать лет после смерти Эйнштейна Джон Шварц почуял, что нашел ответ.
Глава 31
Необходимая неопределенность бытия
Неопределенность в квантовой механике – дело принципа. Принципа неопределенности. Согласно ему, некоторые характеристики систем, количественно описанные ньютоновскими законами движения, не могут быть описаны бесконечно точно.
Недавно Алексею страшно понравилась одна старая хохма. Монашка, священник и раввин играют в гольф. Промазывая, раввин всякий раз восклицает: "Бога в душу, я промазал!" К семнадцатой лунке священник начинает закипать. Раввин обещает сдерживаться, однако, промахнувшись мимо очередной лунки, опять кричит: "Бога в душу, я промазал!" Тут священник предупреждает его: "Еще раз ругнешься, Бог тебя поразит на месте". У следующей по счету лунки раввин снова дал зевка и опять ругнулся. Небеса потемнели, поднялся ветер и сквозь тучи жахнула ослепительная молния. Когда дым рассеялся, перепуганный священник и остолбеневший раввин уставились на останки монашки, поджаренные до хруста. И тут с небес раздался громоподобный голос: "Бога в душу, я промазал!"
Алексей говорит, что это смешно, потому что непочтительно к Богу, т. е., иными словами, представляет божество несовершенным, способным на человеческие оплошности. Понятие о несовершенном Боге или Природе – вот что заботило многих физиков в квантовой механике. Богу же указать местоположение чего бы то ни было точно – раз плюнуть, нет?
Этот предел определенности в природе вдохновил Эйнштейна на знаменитое высказывание: "Квантовая механика действительно впечатляет. Но внутренний голос говорит мне, что это еще не настоящий Иаков. Эта теория говорит о многом, но все же не приближает нас к разгадке тайны Всевышнего. По крайней мере, я уверен, что Он не бросает кости". Если бы хохма была в ходу во времена Эйнштейна – а это очень старая шутка, – он, возможно, пробормотал: "Всевышний может метнуть молнию куда и когда пожелает".
Вероятно, – за исключением отношений Шрёдингера с особами противоположного пола – все в нашей жизни есть сплошная неопределенность. Так отчего же, спросим мы, принцип, утверждающий нечто очевидное, заслуживает столь величавого имени? Неопределенность принципа Гейзенберга – странного фасона. Это разница между классической и квантовой теорией – между пределами человеческих возможностей и, скажем так, божественных.
Загадайте ребенку загадку: все гамбургеры-"четвертьфунтовики" в "Макдональдсе" весят по четверти фунта – правда или чушь? Детишки-циники скажут "чушь", исходя из логики, что компания, продающая сорок миллионов гамбургеров ежедневно, может крупно сэкономить на мясе, не докладывая сотую долю фунта в каждый. Но речь не о системной ошибке – в равной степени не может быть, что каждый гамбургер весит ровно 0,24 фунта. Весь фокус в том, что каждый бургер в "Макдональдсе" весит немножко по-разному.
Разница тут не сводится к кетчупу. Если аккуратно все измерить, выяснится, что каждый гамбургер имеет разную толщину, уникальную форму и личность – на микроскопическом уровне. Как и среди людей, среди гамбургеров нет двух одинаковых. С точностью до какого десятичного знака надо померить бургеры, чтобы все их различать по весу? Раз их продают свыше миллиарда в год, т. е. 10, этих знаков должно быть не менее 9. Однако вряд ли у этих бургеров поменяют название на "0,250000000-фунтовики".
Бургер бургеру рознь – то же верно и для экспериментальных замеров. Действия, производимые в процессе измерения, механическое и физическое состояние весов, потоки воздуха вокруг, местная сейсмическая активность, атмосферное давление – уйма мельчайших факторов, и каждый чуточку меняется при всяком следующем замере. Вводим различение потоньше – и с гарантией не получаем воспроизводимых результатов.
Вот это – не принцип неопределенности.
Квантовый принцип неопределенности идет дальше; он гласит, что определенные качества образуют комплементарные пары - пары, у которых есть определенное ограничение: чем точнее измерено одно качество, тем менее точно удастся измерить другое. Согласно квантовой теории, значение этих комплементарных свойств за пределами ограничивающей точности неопределенно, а не просто за пределами возможностей нашего оборудования.
Многие годы физики пытались доказать, что таково ограничение нашей теории, а не самой природы. Они предполагали, что где-то прячутся "скрытые переменные" – определенные, но неподвластные нашим измерениям. Оказывается, единственный вид измерения, доступный нам, – такой, что позволяет отмести эти самые скрытые переменные. В 1964 году американский физик Джон Белл объяснил, как это можно проделать. В 1982-м эксперимент поставили, и он показал, что предположение о скрытых переменных неверно. Ограничение действительно обусловлено законами физики.
Математика принципа неопределенности утверждает: результат неопределенности двух комплементарных членов пары должен равняться числу, называемому постоянной Планка.
Местоположение – часть одной из комплементарный пар принципа неопределенности. Ее напарник, импульс, есть – без учета фактора массы – скорость объекта. Брачное свидетельство описывает ограничение для этой пары: погрешность одного меняется в обратной пропорции к точности второго. У этого ограничения нет исключений, это очень католический брак: никаких неверностей, никаких разводов. Умножаем погрешность определения местоположения на погрешность определения скорости и получаем число, равное числу герра Планка.
Постоянная Планка – малюсенькое число. В противном случае мы бы заметили квантовые эффекты гораздо раньше (если бы в таком мире вообще могли существовать). Прилагательное "малюсенький" в данном случае есть буквально "порядка миллиардных". Постоянная Планка примерно равна одной миллиардной миллиардной миллиардной, или 10 чего-нибудь, в данном случае – единицы эрг-грамма. Разумеется, значение постоянной Планка зависит от того, в каких единицах она выражена. Эрг-грамм – единица, с которой мы сталкиваемся в быту. Представьте неподвижно лежащий на столе однограммовый пинг-понговый шарик. Для большинства из нас "неподвижно лежащий" означает скорость, равную нулю. Физик-экспериментатор знает: измерение без указания пределов погрешности имеет мало смысла. Вместо описания "шарик лежит неподвижно" в записях экспериментатора появится скорее такая формулировка: "Шарик не движется быстрее одного сантиметра в секунду". В классической физике это и будет весь сказ. В квантовой механике даже эта не бог весть какая точность имеет цену: она устанавливает предел, с которым можно определить местоположение пинг-понгового шарика.
Предел точности в 1 сантиметр в секунду приводит к граничной точности, которая, как и постоянная Планка, – ма-а-аленькая-малюсенькая. Проделав вычисления, выясним, что местоположение шарика мы можем установить с точностью до 10 см. Поскольку такой предел не слишком стесняет, возникает знакомый вопрос: и кому это надо? До конца XIX века никому и не было надо – вернее, никто не обращал внимания. Но давайте-ка заменим пинг-понговый шарик на электрон. Как раз такую замену и произвели физики в конце позапрошлого века.
Помните оборот "без учета фактора массы", который столь непринужденно включен в определение импульса? Оно, может, в свое время и не производило особого впечатления, однако именно это уточнение – причина заметности квантовых эффектов в масштабах не пинг-понговых шариков, но атомов.
Мы определили массу шарика для пинг-понга в 1 грамм. Масса электрона – 10 граммов. В отличие от шарика, погрешность определения скорости в 1 см/сек для электрона превращается в ограничение определения точности импульса до 10 г-см/сек – из-за фактора массы электрона измерение скорости, казавшееся небрежным, делает определение импульса очень точным. Зато с возможностью определить местоположение электрона дело плохо.
Если, как и в случае с шариком для пинг-понга, мы определяем скорость электрона с точностью до ± 1 см/сек, местоположение электрона не удастся определить точнее, чем ± 1 см. Такое ограничение точности – совсем не малюсенькое. Напротив, оно довольно заметно. Паршивая выйдет игра в пинг-понг при такой точности определения местоположения шарика, но на атомном уровне ситуация именно такова. Для электронов в атоме определять их местоположение как "ну где-то в радиусе 10 см", что и есть примерные размеры атома, означает вынужденную неопределенность в части скорости электронов до 10 см/сек, а эта неопределенность практически равна самой скорости электрона.
Квантовой механике в формулировке Гейзенберга и Шрёдингера удалось весьма успешно описать явления и атомной, и даже ядерной физики своего времени. Но применение принципа неопределенности к гравитации в описании теории Эйнштейна приводит нас к довольно диковинным выводам о геометрии пространства.
Примечания
1
Герой американских и британских комиксов, фильмов и телесериалов с 1951 года (создатель – американский художник Хэнк Кетчэм). – Здесь и далее примечания переводчика.
2
Массачуссеттский технологический институт.
3
"Коломбо" – американский детективный телесериал ("Эн-би-си", 1968–1978; "Эй-би-си", 1989–2003) Ричарда Левинсона и Питера Линка; "Дела Рокфорда" – американский детективный телесериал, драма ("Эн-би-си", 1974–1980) Роя Хаггинза и Стивена Дж. Кэннелла.
4
Arthur Koestler, "The Act of Creation", Хатчинсон, Великобритания, 1964, Макмиллан, США, 1964. Артур Кёстлер (1905–1983) – венгерско-британский журналист и писатель.
5
Wolfgang Kohler, "Intelligenzpmfungen an Anthropoiden", Королевское Прусское научное общество, Берлин, 1917. Рус. изд.: М.: Издательство Коммунистической Академии, 1930. Вольфганг Кёлер (1887–1967) – немецкий психолог и феноменолог.
6
Детектив, главный герой романа "Мальтийский сокол" (1930) и некоторых других произведений американского писателя Дэшилла Хэмметта (1894–1961), неоднократно экранизированных.
7
Сол Стайнберг (1914–1999) – американский иллюстратор и художник-карикатурист. Описывается его знаменитая работа, опубликованная 29 марта 1976.