Вспоминая об этом периоде своей жизни, Ханс Эрстед писал, что для того, чтобы юноша был абсолютно свободен, он должен наслаждаться в великом царстве мысли и воображения, где есть борьба, где есть свобода высказаться, где побежденному дано право восстать и бороться снова. Молодой человек интересовался буквально всеми науками. В 1797 году он получил золотую медаль за эссе "Границы поэзии и прозы", затем написал работу о свойствах щелочей, также получившую высокую оценку у профессорского состава. А блестяще защищенная в 1798 году докторская диссертация была посвящена медицине. Есть сведения, что степень доктора философии была присуждена Эрстеду даже без формальной защиты, за работу "Метафизические основы естествознания Канта". По крайней мере, это был первый опубликованный труд ученого.
По окончании университета Эрстед получил звание фармацевта высшей ступени. Некоторое время он работал управляющим одной из преуспевающих копенгагенских аптек. Но долго оставался вне университетских аудиторий он не мог и вскоре получил должность адъюнкта. Преподавательская нагрузка была невелика (всего две лекции в неделю), и Ханс продолжал работать в аптеке, используя имеющееся там оборудование для самостоятельных исследований.
В 1801 году Эрстед был отправлен на стажировку в Германию, Францию и Голландию. В Германии он проникся идеями философа Фридриха Вильгельма Шеллинга, особенно его мыслью о всеобщей связи природных явлений. Такому ученому-универсалу, как Эрстед, такая идея не могла не показаться привлекательной. "Мое твердое убеждение, – писал он, – что великое фундаментальное единство пронизывает природу. После того как мы убедились в этом, вдвойне необходимо обратить наше внимание на мир разнообразия, где эта истина найдет свое единственное подтверждение. Если мы не сделаем этого, единство само по себе становится бесплодным и пустым рассуждением, ведущим к неправильным взглядам". Возможно, именно увлечение философией Шеллинга впоследствии привело к открытию, прославившему Эрстеда. Во Франции молодой ученый слушал лекции Шарля, Бертолле, Кювье. Особое впечатление на него произвели учебные лаборатории Парижской политехнической школы: ни в Германии, ни тем более в родной Дании таких лабораторий не было, и преподавание физики в основном сводилось к чтению лекций. Естественно, что экспериментальный подход к обучению, да и к науке в целом, гораздо больше импонировал молодому ученому.
На родине, куда Эрстед вернулся в 1804 году, работа для него нашлась не сразу. Вскоре, однако, он стал заведовать коллекцией физических и химических приборов, принадлежавшей королю, а затем и читать частные лекции по физике и химии. Эрстед вспоминал, что желающие посетить его лекции не помещались в аудитории. Успехи талантливого лектора убедили руководство Копенгагенского университета, и в 1806 году Эрстеда пригласили занять должность экстраординарного профессора физики и химии.
В 1812 году ученый вновь отправился в Берлин и Париж. Во Франции он опубликовал работу "Исследования идентичности химических и электрических сил" (1813). Она пронизана все теми же идеями о глубокой связи между различными природными явлениями. Помимо всего прочего, в ней была следующая мысль: "Следует испробовать, не производит ли электричество… каких-либо действий на магнит". Рассуждения Эрстеда были просты и резонны: раз электричество может порождать световые, звуковые и тепловые явления, возможно, оно имеет и магнитный эффект, тем более что отдельные подобные наблюдения делались уже давно. Кстати, эта цитата опровергает широко распространенную версию о том, что Эрстед сделал свое открытие совершенно случайно.
После возвращения в Данию Эрстед женился на Инжер Бирджит Боллум. Супруги в гармонии прожили вместе до конца своих дней и воспитали восьмерых детей: трех сыновей и пятерых дочерей. Но женитьба и семейные заботы не отвлекли Эрстеда от науки. Он напряженно искал доказательства магнитного действия электрического тока. Кроме этого, понимая, что уровень развития физики в Дании сильно уступает европейскому, ученый прилагал много усилий для того, чтобы создать на родине достойную физическую школу. Именно он создал первую в стране физическую лабораторию. С 1815 года Эрстед был также бессменным секретарем Королевского научного общества Дании, в 1817-м получил должность ординарного профессора.
Подходя к рассказу о главном открытии Ханса Эрстеда, нужно сделать небольшое замечание. Часто пишут, что Эрстед открыл магнитное действие электрического тока. Но вернее будет сказать, что он доказал и экспериментально подтвердил связь между электричеством и магнетизмом. К тому времени существовало уже немало подтверждений связи между электрическими и магнитными явлениями. Большую работу по сбору сведений в этой области провел французский ученый и историк науки Доминик Франсуа Араго. Так, исследуя корабль, поврежденный ударом молнии, Араго обратил внимание на то, что стрелки компасов показывают в разные стороны. Позже, осматривая разбившееся генуэзское судно, он также обнаружил, что стрелки компасов перемагничены (что и стало причиной катастрофы), а часть металлических предметов намагнитилась. И Араго, и другие физики осознавали, что открытие назревает.
И, наконец, настал день, ознаменовавший новый переворот в физике. 15 февраля 1820 года (некоторые источники сообщают, что открытие произошло еще в декабре 1819 года) Эрстед проводил лекцию, сопровождающуюся демонстрациями. Что конкретно произошло на той лекции, случайное открытие или целенаправленный опыт, неизвестно и вряд ли когда-то станет известно наверняка. Часть студентов, присутствующих на лекции, говорили, что Эрстед собирался продемонстрировать эффект нагревания проволоки, по которой проходит электрический ток. Более того, есть даже свидетельства, что не Эрстед, а один из студентов заметил, что стрелка компаса, находившегося вблизи от провода, по которому протекал электрический ток, дрожит и отклоняется, при этом профессор был явно удивлен и обрадован. Сам же ученый позже писал: "Все присутствующие в аудитории – свидетели того, что я заранее объявил о результате эксперимента. Открытие, таким образом, не было случайностью". Так или иначе, приоритет открытия очевиден, а случайным в полной мере оно быть не могло – мы уже знаем, что Эрстед давно интересовался подобной проблемой.
Большая занятость не позволяла Хансу Эрстеду сразу же продолжить изучение открытого им явления. Только в июле 1820 года он повторил свои опыты, используя более мощный источник тока и более толстую проволоку. Эффект не только подтвердился, но и был значительно сильнее. А 21 июля ученый опубликовал работу "Опыты, относящиеся к действию электрического конфликта на магнитную стрелку". Уже через несколько дней Араго, бывший тогда в Женеве, ознакомился с ней и 4 и 11 сентября на заседаниях Парижской академии сделал устные сообщения об опытах Эрстеда. На заседаниях присутствовал Ампер, который в считанные дни, отталкиваясь от опытов датчанина, фактически разработал основы нового раздела физики – электродинамики. Позже Ампер писал об открытии Эрстеда: "…датский физик, профессор, своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом".
После того как ведущие европейские физики ознакомились с "Опытами, относящимися к действию электрического конфликта на магнитную стрелку", на Ханса Эрстеда буквально посыпались почести и награды. Он был избран членом Лондонского королевского общества и Парижской академии, получил от Лондонского общества медаль за научные заслуги и французскую премию в 3000 франков, основанную Наполеоном специально для крупных открытий в области электричества.
Почивать на лаврах датский ученый не стал и продолжил свои изыскания. В 1822–1823 годах он независимо от Фурье открыл термоэлектрический эффект и создал первый термоэлемент. Проводя многочисленные эксперименты по исследованию сжимаемости и упругости жидкостей и газов, он изобрел пьезометр – прибор для измерения сжимаемости. Также Эрстед стал первым, кто смог получить металлический алюминий (в 1825 году). Занимался он и молекулярной физикой, в частности, изучал отклонения от закона Бойля – Мариотта.
Что же касается просветительской деятельности, то здесь Ханс Эрстед не ограничивался простым выполнением своих преподавательских обязанностей. В 1824 году он организовал Общество распространения естественнонаучных знаний и основал литературный журнал. По его инициативе в 1829 году был создан Королевский политехнический институт, директором которого Эрстед оставался до конца жизни. Ученый организовал просветительские лекции для женщин. Со временем дом знаменитого ученого стал своего рода культурным центром Копенгагена, где собирались ученые, писатели, философы. Большую роль сыграл Эрстед и в судьбе Ханса Кристиана Андерсена. Фактически ученый стал первым, кто поддержал молодого писателя, оценил его таланты, с пониманием отнесся к избранному им жанру.
Скончался Ханс Кристиан Эрстед 9 марта 1851 года. И при жизни, и после смерти он был чрезвычайно популярен среди соотечественников. Хоронили ученого как национального героя, в последний путь его провожала ночная похоронная процессия – более 200 000 человек. Среди пришедших проститься с Хансом Эрстедом были ученые, правительственные чиновники, члены королевской семьи, дипломаты, множество студентов и простых граждан.
ГАУСС КАРЛ ФРИДРИХ
(1777 г. – 1855 г.)
Карл Фридрих Гаусс родился 30 апреля 1777 года в немецком городе Брауншвейг, в очень бедной семье. Его отец работал слесарем, позже освоил другую профессию и стал садовником. Кроме того, он подрабатывал счетоводом в торговой конторе. Мать Карла была дочерью каменщика. В отличие от своего супруга, человека довольно мрачного и сурового, если не сказать грубого, она была мягкой, доброй, веселой и рассудительной женщиной. Карл был ее единственным и горячо любимым ребенком.
Как и многих других героев этой книги, Карла Гаусса вполне можно отнести к вундеркиндам. Его выдающиеся способности к математике обнаружились в самом раннем возрасте. Сам знаменитый ученый рассказывал: "Я научился считать раньше, чем говорить". И, надо сказать, он почти не преувеличивал. Уже в три года Карл умел считать и выполнять элементарные вычисления. В частности, широко известен следующий случай. Однажды в доме собрались товарищи отца по работе, чтобы поделить деньги, вырученные за неделю. Маленький Карл внимательно слушал своего родителя, производившего расчеты вслух. А когда тот закончил, заявил: "Папа, ты ошибся!" Пораженный отец перепроверил свои расчеты и обнаружил, что его трехлетний сынишка оказался абсолютно прав. Так же легко давалось Карлу и чтение. После того, как мать рассказала ему о буквах, он совершенно самостоятельно овладел техникой чтения.
В 1784 году, когда мальчику исполнилось семь лет, он поступил в начальную школу. В течение первых двух лет обучения он был просто хорошим учеником. Выдающиеся способности проявились на третьем году обучения. Как-то учитель, чтобы занять детей, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1 + 100 = 101, 2 + 99 = 101 и т. д., и мгновенно получил результат 50 × 101 = = 5050. Проучившись в школе четыре года, Карл сразу поступил во второй класс гимназии. Здесь раскрылись и другие таланты одаренного мальчика. Он продемонстрировал незаурядные лингвистические способности, удивительно быстро овладев греческим и латынью. Гаусс некоторое время всерьез размышлял над тем, чему отдать предпочтение – филологии или математике, но в результате остановил свой выбор на точной науке.
В десять лет Карл уже приступил к изучению высшей математики, а в пятнадцать познакомился с трудами Лагранжа, Эйлера и "Математическими принципами натуральной философии" Ньютона. Школьные учителя были так поражены выдающимися способностями Карла, что обратились к герцогу Брауншвейгскому с просьбой финансово поддержать вундеркинда. Это сыграло немаловажную роль в судьбе Карла Гаусса. Он произвел на герцога очень благоприятное впечатление, и тот начал покровительствовать ему, в частности, оплатил обучение в привилегированном учебном заведении – Коллегии Карла, в которой Карл учился с 1792 по 1795 год. К этому же времени относятся и его первые самостоятельные работы.
В 1795 году Гаусс поступил в Геттингенский университет, где занимался под руководством профессора Кестнера. Деньги на обучение также дал герцог Брауншвейгский. В том же году Карл сделал свое первое серьезное открытие: он разработал метод наименьших квадратов. Гаусса считают одним из создателей теории ошибок. Через год он решил классическую задачу о делении круга, продемонстрировал связь этой проблемы с задачей построения правильных многоугольников с помощью линейки и циркуля. Затем он показал, что таким образом теоретически возможно построение многоугольников с количеством углов 3, 5, 17, 257 и 65337 (так называемые гауссовы простые числа), и с числом углов, равным произведению любого (не повторяющегося) числа гауссовых чисел, умноженного на любую степень двойки. Для 17-угольника Гаусс также не только доказал возможность, но и нашел способ построения. Со времен античности это было первое подобное открытие (грекам был известен метод для треугольников и пятиугольников). Сам ученый посчитал это свое достижение очень важным и даже отметил день этого события (30 марта 1796 года) в своем дневнике.
В 1798 году Гаусс, не окончив университет, покинул Геттинген и отправился в Гельмштадт. Здесь под руководством известного математика Пфаффа он написал и защитил диссертацию. Темой ее стало доказательство основной теоремы алгебры, согласно которой, каждое алгебраическое уравнение имеет корни. Также Гаусс доказал, что число корней многочлена равно количеству единиц в показателе его степени. К общей теореме ученый возвращался не раз и позднее предложил еще несколько способов ее доказательства.
Вернувшись в родной Брауншвейг, Гаусс собрал и опубликовал результаты своих исследований, которые довольно быстро принесли молодому математику европейскую известность. Ему еще не было двадцати пяти лет, когда свет увидел его знаменитый трактат "Арифметические исследования" (1801). Надо сказать, что и сейчас, спустя более чем 200 лет, по богатству материала, ряду прекрасных открытий, разнообразию и остроумию доказательств эта работа считается одной из самых выдающихся в теории чисел.
Следует отметить, что научные интересы Карла Гаусса выходили далеко за рамки любимой им математики. В 1801 году произошло событие, благодаря которому его имя было золотыми буквами вписано в историю астрономии. В январе этого года итальянский астроном Пьяцци открыл новое небесное тело. Оно светилось как звезда восьмой величины, но перемещалось среди звезд, и поэтому его приняли за комету. Пьяцци успел произвести только 19 наблюдений, после объект скрылся в лучах Солнца. Попытки астрономов вычислить его орбиту по тому небольшому отрезку, который проследил Пьяцци, успеха не имели. Однако в том же году Карл Гаусс решил эту, казалось бы, непосильную задачу. Он предложил совершенно новый способ вычисления орбиты небесного тела всего лишь по трем наблюдениям. Проведя сложные и трудоемкие вычисления, он доказал, что новое небесное тело представляет собой планету, которая движется по эллиптической орбите между орбитами Марса и Сатурна. Это была первая из открытых астрономами малых планет. Пьяцци дал ей имя Церера. Прогнозы Гаусса относительно орбиты Цереры оказались точными. 7 декабря 1801 года планета была вновь обнаружена в месте, указанном ученым. После этого успеха о Гауссе как о блестящем ученом заговорили не только математики, но и астрономы, он даже был приглашен в Санкт-Петербург на должность директора обсерватории, от которой, правда, отказался.
В дальнейшем, после открытия малых планет Паллады (1802) и Юноны (1804), Гаусс также вычислил их орбиты. При этом исследование движения Паллады было сильно усложнено тем, что ее орбита испытывает возмущения, связанные с близостью Юпитера. Наряду с этими работами Гаусс занимался и еще более сложным вопросом – движением комет. До него ученые даже не были уверены, постоянны ли законы их движения. Гаусс не только утвердительно ответил на этот вопрос, но и значительно упростил процесс расчета орбит комет. Результаты своих астрономических исследований он опубликовал в фундаментальном трактате "Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям" (1809). Методы вычисления орбит, изложенные в этом труде, с небольшими изменениями и дополнениями используются до сих пор. В 1810 году за решение задачи о движении Паллады Французский астрономический институт наградил Карла Гаусса золотой медалью.
Но вернемся к карьере знаменитого ученого. В 1807 году Гаусс вместе с семьей переехал в Геттинген, где ему была предложена должность экстраординарного профессора университета и пост директора Геттингенской обсерватории, который он занимал до конца своей жизни. В Геттингене Гаусс продолжил свои астрономические исследования, он занимался изучением возмущений в движении малых планет. Результаты исследований ученый поэтапно публиковал с 1811 по 1818 год в труде "Записки", издававшемся Геттингенским научным обществом. Астрономические вычисления привели Гаусса к целому ряду математических открытий.