Полвека в авиации: записки академика - Евгений Федосов 2 стр.


Но мода - модой, а учиться-то надо. И началась суровая школа МВТУ, за прохождение которой я и сейчас благодарен его преподавателям. Это уникальный вуз, который сегодня сохранил свои традиции прежде всего в том, что не только дает знания в какой-то области, но учит умению работать. Это умение воспитывалось через непрерывный поток лабораторных и курсовых работ по самым разным предметам, которые, как нам казалось, были совсем не нужны. В той же технологии машиностроения имелся такой раздел, как "раскрой кожи". Зачем? А дело в том, что когда-то станки имели ременный привод от общего вала, и инженер должен был уметь, придя на производство, раскроить кожу для изготовления ремня… Пережиток прошлого? Да. И их было много. Но как ни странно, изучение их расширяло наш кругозор, помогало почувствовать, что же это такое - машиностроение.

На первых двух курсах мы проходили производственную практику в механических мастерских, где не просто должны были слесарить или работать на токарном станке, а еще и получить третий рабочий разряд слесаря, токаря, фрезеровщика, сварщика, литейщика, модельщика… Причем, подход к нашему обучению был очень серьезным. Ты получал, например, кусок металла и должен был за определенное время изготовить куб. Не уложился в срок - не получишь зачет.

На третьем курсе я поступил на вечернее отделение мехмата МГУ, чтобы углубить математическую подготовку. Так вот, студенты МГУ подшучивали над нами, "бауманцами", что мы там изучаем "теорию болта и гайки". В этой шутке было много правды, но, придя на производство, мы не раз добрым словом вспоминали несложную, но такую нужную инженеру школу механических мастерских.

Особенно пригодились эти навыки мне, поскольку жили мы без отца, мама зарабатывала мало, и летом я подрабатывал на заводе сельскохозяйственного машиностроения им. Ухтомского в Люберцах. После первого курса я пошел в литейный цех на формовку. Искусство ее сводилось к следующему. В опоку, где заложена модель, засыпается земля, которая уплотняется на вибростенде. И надо было поймать момент, когда земля уплотнилась хорошо, но не более чем надо, потому что, если опоку передержать на вибростенде, земля прилипает к стержню, и при литье идет брак. Та же картина наблюдается, если форма получилась рыхлой. Брака я давал много и почти ничего не заработал за месяц. Надо было уходить, но куда?

Рядом с нами работала бригада стариков, которые занимались ручной формовкой. Они-то и пригласили меня к себе на формовку картера сенокосилки, которая велась "перекидным болваном" - есть такой термин в литейном производстве. Мне доверили на тачке подвозить формовочную землю. Оплата бригаде шла по бригадному подряду, потом делили ее по вкладу каждого в производство. Здесь я уже получал неплохие деньги. И хотя не стал классным формовщиком, но что такое труд рабочего - за три летних месяца узнал хорошо. Работать приходилось в три смены, в жару, не жалея себя… С тех пор я с глубоким уважением отношусь к рабочему классу, который принял меня в свои ряды, опекал, учил, делился опытом.

После второго курса я работал в кузнечном цеху подсобным рабочим у кузнеца. Я должен был вынимать клещами из термопечи раскаленную заготовку и класть ее в изложницу, а кузнец уже паровым молотом ковал детали. Вот где я не уставал восхищаться искусством кузнеца: нажимая ногой на педаль, он должен был очень точно рассчитать силу удара. Мое же дело было - по его команде поворачивать заготовку. Случалось, кузнецы устраивали между собой соревнования. Для этого брали коробку спичек, выдвигали до половины внутреннюю часть, ставили торцом на наковальню и молотом забивали ее на место, не повредив сам коробок. А ведь сила удара измерялась тоннами…

Здесь я почувствовал, понял, что такое искусство рабочего. Оно не было, да и не может быть массовым, но именно таких людей называли мастерами своего дела, и от них зачастую зависело производство целого завода. В том же кузнечном цеху находился участок, где сваривали рамы для сенокосилок. Из-за остаточного термического напряжения все они получались искореженными. Работали с ними два здоровенных молотобойца. Каждый из них подходил к изогнутой раме, долго приглядывался к ней, а потом наносил удар кувалдой в одну какую-то выбранную им особую точку. И рама тут же выпрямлялась… До сих пор для меня остается загадкой, как можно было "на глазок" найти точку концентрации напряжения сложной металлической конструкции и одним ударом снять его, разгрузить раму. И таких случаев я наблюдал много.

Однажды мне пришлось поработать на заводе счетно-аналитических машин, где делали пишущие машинки "Москва". Буквы шрифта крепятся в ней на рычажках, каждый из которых изгибается под определенным, только ему присущим углом. Я уже был на четвертом курсе, руководил студенческим научно-техническим обществом факультета приборостроения, и нас попросили в качестве шефской помощи заводу разработать автомат гибки этих рычажков. Я пошел на завод посмотреть, как эту операцию выполняет рабочий. Что же я увидел? Перед рабочим лежало простейшее приспособление, чем-то похожее на гладильную доску. В ней - прорезь, куда вставляется рычажок, набиты гвоздики, укреплен рычаг на толстой пружине… Им рабочий изгибает рычажок до какого-то гвоздика, отпускает. Рычажок чуть разгибается под воздействием остаточной деформации… И вот он быстро-быстро гнет эти рычажки. Зачем же понадобился автомат, который бы его заменил? А затем, что этот один рабочий обеспечивает выпуск продукции всего завода, и если он заболел, производство останавливается. Потому что никто гнуть эти рычажки с такой точностью не может - брак идет сплошной. Я долго изучал его работу и понял, что автоматизировать этот процесс почти невозможно, потому что он основан на мускульном усилии руки этого конкретного человека, который очень точно его прилагает при гибке рычажка, да к тому же учитывает его остаточную деформацию… Это тоже своего рода искусство, которым он овладел в совершенстве, что сделало его незаменимым на заводе. На него все молились, чтобы он, не дай Бог, не заболел. Таких людей знали и берегли директора заводов, потому что от них зависела буквально судьба предприятия - план и т. п.

Два лета, которые я проработал на заводе им. Ухтомского, не только позволили мне приобрести ряд специальностей, но и помогли понять законы и особенности реального производства. А с четвертого курса началась специализация. Нам стали читать расширенный курс электротехники. Поскольку мы должны были овладеть основами радиолокации, традиционного объема знаний, которые давали в МВТУ в этом курсе, нам явно не хватало, и для углубленного преподавания электротехники приглашались профессора из МЭИ. Я всегда с нетерпением ждал лекций профессора Лаврова, который блестяще читал их по этому предмету, а позже и по электродинамике. И хотя мы изучали электротехнику по учебникам Круга, которые были основными для студентов МЭИ, нам давали массу дополнительных сведений по нестационарным, переходным процессам в электрических цепях, операционному исчислению и т. д. То есть мы осваивали методы решения дифференциальных уравнений, описывающих эти процессы, что в будущем мне очень пригодилось.

Во втором семестре нам стали читать электродинамику, как основу теории антенн в радиолокации. В общем, к концу четвертого курса я получил хорошие знания в области радиотехники. Казалось бы, парадокс: МВТУ, чисто механический вуз, который готовит инженеров-механиков, вдруг начал выпускать специалистов в области радиолокации. Более того, все конструкторские отделы в радиотехнических институтах и КБ, которые занимались антеннами, были составлены из выпускников МВТУ, прошедших кафедру профессора А. М. Кугушева. Организовал эту кафедру академик А. И. Берг, возглавлявший 108-й институт (ныне ЦНИИ РТИ), в котором и работал главным инженером Кугушев. Он многие годы возглавлял кафедру радиолокации, где сложилась своя хорошая научная школа. Вообще-то в этой области Россия не стояла в числе лидеров. Наиболее крупные разработки в 40-х годах XX века в области радиолокации были сделаны в Англии и Америке. В их числе - знаменитый радиолокатор SCR-584 для управления стрельбой зенитных пушек, который хорошо себя показал во время Второй мировой войны. Он и стал как бы образцом для первых наших разработок в области радиолокации и систем управления зенитным огнем.

Так почему же именно МВТУ вдруг стал готовить специалистов по радиолокации? Да потому, что антенны - это чисто механические устройства. Причем, как ни странно, до сих пор нет четкой аналитической теории их расчета. Дело в том, что электродинамика антенн описывается уравнениями в частных производных; это сложнейшие уравнения, для которых так и не найдено прямых аналитических решений. Сейчас их пытаются решать с помощью суперкомпьютеров, а тогда… Когда нам прочли курс электродинамики, мы, конечно, знали аналитические зависимости общего порядка, которые сформулировал еще Максвелл в XIX веке, переведенные позже на язык векторного исчисления и т. д., но конечных инженерных решений они не имели. А ведь антенну надо конструировать не только по законам электродинамики, но и механики, учитывая нагрузки, вращающие моменты и т. д. Поэтому основные разработчики антенн в российских КБ - это выпускники МВТУ, где смогли объединить, казалось бы, совершенно разные области физики и механики.

Лекции по радиолокации нам читал профессор А. А. Расплетин. Практику мы проходили в НИИ-20 (теперешний "Антей" в Кунцево) и на полигоне в Долгопрудном, где стоял американский SCR-584 и наш первый локатор "Мост". Он имел не параболическую антенну, а похожую на нынешние телевизионные, что устанавливаются на крышах домов. Мы работали операторами радиолокационных станций…

Обучение в МВТУ мне очень нравилось, хотя на первых двух курсах было скучновато - черчение, сопромат и ряд других дисциплин особого энтузиазма не вызывали. Нам давали рассчитывать какие-то заумные фермы, балки, а при малейшей ошибке - сразу "неуд.". Поэтому сдать экзамен по сопромату с первого раза почти никому не удавалось, основная масса студентов делала два-три захода, но были "корифеи", которые брали барьер с пятой или шестой попытки. Я относился ко второй категории. Сопромат у нас вел профессор Всеволод Иванович Феодосьев, который стал потом членом-корреспондентом Академии наук СССР. Блестящий ученый, он отлично разбирался в нелинейных задачах упругости, расчетах мембран, оболочек и других сложных в математическом плане объектов. Так вот, мы с Феодосьевым оказались выпускниками одной и той же школы, только он заканчивал ее лет на десять раньше, причем отец его преподавал у нас литературу. Поэтому мне приходилось много слышать о нем, в том числе и от учительницы математики. Она говорила:

- Вот у тебя, Федосов, фамилия созвучна с Феодосьевым. Но он перерешал все задачи, которые я накопила еще со времен преподавания в гимназии, а ты на это не способен…

Поэтому со школьных лет я питал к нему сложную гамму чувств: вот есть "отличник" Феодосьев и есть "нерадивый" Федосов. Когда же я стал студентом, то рассказал ему эту историю. Он рассмеялся, у нас сложились добрые отношения, но это никак не сказалось при сдаче мною ему экзамена по сопромату. В билете мне достался вопрос о расчете толстостенных труб по формулам Лямме. Это довольно сложные "многоэтажные" формулы, которые я честно вызубрил. Когда же стал отвечать по билету, он, выслушав меня, коротко бросил:

- Содрал… Я обиделся:

- Нет, я это знаю, выучил.

- Содрал, - повторил Феодосьев, - я сам их не помню, а ты - выучил? Ишь, какой умник! Вот тебе задача…

И он дал мне простейшую задачу, какую только можно было придумать:

- Вот пружина, а это - кирпич весом Р. Я положил его на пружину. Она осела на величину L - "лямбда". Таким образом работа определяется, как PL Но, согласно закону Гука, работа при упругой деформации пружины равняется PL/2. Куда делась половина энергии?

Студент, как и ученик средней школы, чаще всего мыслит догматично, поскольку все извлекает готовым из учебников, конспектов лекций… В общем, ответа я не нашел и он меня выгнал с экзамена. Пересдать удалось со второй попытки, он поставил мне "тройку", но я не успокоился на этом и говорю:

- Всеволод Иванович, а как все-таки решается та задача?

- Понимаешь, ты должен был задать мне встречный вопрос: а как кирпич на пружину положили? Если я просто брошу его на пружину, тогда она сначала оседает на 2L, и потом половина энергии уйдет на колебания. А если я его медленно опускаю, то нагружаю пружину по линейному закону Гука… Но ты же мне этот вопрос не задал.

…Забегая вперед, скажу, что эту историю я ему припомнил, когда уже был академиком, а Феодосьев баллотировался в члены-корреспонденты. Он пришел попросить, чтобы я его по старой памяти поддержал, что я конечно же с удовольствием сделал, поскольку он - и мой учитель, и давно заслуживал этого звания, но спросил:

- Всеволод Иванович, а помните, как надо мной издевались? Он засмеялся:

- Кто старое помянет, тому глаз вон…

В общем, на первых курсах я не блистал, но начиная с третьего, когда мы приступили к приборной специализации, учеба и научная студенческая работа полностью захватили меня.

Когда же мы дошли до пятого курса, в МВТУ начали обучение по специальности "Управление ракетными снарядами", и это коренным образом изменило мою судьбу. Новая специальность считалась очень секретной, закрытой, и на нее отобрали лучших студентов, да еще с учетом анкетных данных. В число избранных попал и я. Была организована новая кафедра под руководством профессора Владимира Викторовича Солодовникова, для подготовки специалистов по системам управления ракет. Из трех групп отобрали и сформировали одну. А до этого МВТУ уже понес "потери" - часть студентов перешла, когда им предложили, в МИФИ. И вот новая реорганизация. Помимо того, что меня очень заинтересовала сама специальность, в "избранной" группе нам назначили и повышенную стипендию - 750 рублей. Кстати, потом, на работе, мой оклад оказался несколько ниже, но это так, к слову…

Первое, с чем мы столкнулись на новой кафедре, это то, что преподаватели, пришедшие на нее работать, абсолютно ничего не знали об управлении ракетами. Но сам Солодовников был в числе ведущих ученых в области теории управления - являлся одним из создателей так называемой частотной школы. Теория управления в то время бурно развивалась. Во-первых, потому, что стали создаваться новые системы оружия, где широко применялось управление - прежде всего, управляемые ракеты, следящие системы пушечных установок, автопилоты и т. д. Сама жизнь потребовала развития этой науки. Во-вторых, тогда вышел в свет ряд книг - переводов трудов Массачусетского технологического института, в том числе книга Джеймса, Николса и Филипса "Теория следящих систем", где излагалась теория Винера, одного из родоначальников кибернетики.

У нас в России существовала своя школа - мы были в числе стран-лидеров, обладающих теоретическими разработками в области управления, которыми занимались еще Вышнеградский, Ляпунов, Андронов и другие выдающиеся ученые, сделавшие очень много в данном направлении. Но эти разработки не были инженерными методами, а лишь теоретическими. Они основывались на решении обыкновенных дифференциальных уравнений и качественной их теории. Кстати, чтобы лучше понимать математику, как сказано выше, я умудрился поступить на вечерний механико-математический факультет МГУ, где прослушал три курса. Но когда окончил МВТУ и попал в аспирантуру, решил, что для меня это будет уж слишком - иметь второе высшее образование, и покинул университет. Однако и то, что я успел прослушать, дало мне отличную математическую "закваску".

Винер дал инженерную трактовку теории управления. Он основывался на том, что любой нерегулярный процесс во времени можно представить как сумму чисто периодических колебательных процессов с определенными частотами. Совокупность этих частот называется спектр. "Превращение" временного процесса в спектр частот происходит с помощью преобразований Фурье и Лапласа. Винер, собственно, и предложил рассматривать процессы управления не во времени, а в частотной области, для чего ввел понятие передаточных функций, наглядно описывающих именно преобразование спектра сигнала. Они несли в себе гораздо больше практически важной информации, чем чисто формальные частные решения дифференциальных уравнений. Спектральное представление процесса позволяет более ощутимо почувствовать его динамику, поскольку оно, как бы концентрирует, обобщает все то, что происходит во времени.

К чему эти специальные пояснения? А к тому, что Солодовников был одним из тех, кто очень настойчиво развивал у нас это направление. Он начал заниматься им до войны, был одним из пионеров, кто изучал частотные методы, а их широко использовали радисты. Они всегда рассматривали именно спектры, частотное представление процессов, с которыми сталкивались в работе - прохождение сигналов в радиоприемнике, их фильтрация и т. д. А поскольку из нас готовили "радиолокационщиков", которые также имеют дело с радиосигналами, то нам была хорошо понятна физическая суть теории, которую Солодовников развил на базе переведенных с английского языка книг, где были изложены основы частотных методов.

Позже были выпущены учебники школы Солодовникова по теории управления, которые затем перевели во многих странах мира, поскольку они значительно богаче работ Винера. Впоследствии мне пришлось встретиться со специалистами известной французской фирмы "Томсон-CSF", в частности с главным инженером господином Ле-Пелетье. Он окончил знаменитый парижский Политехнический институт и, когда узнал, что я ученик школы Солодовникова, сказал:

- А вы знаете, мы все учимся по учебникам Солодовникова…

В. В. Солодовников читал свои лекции всего один год, по сути дела, опробуя на нас то, что разрабатывал, и, как оказалось, очень успешно, поскольку эти лекции и легли в основу учебников. Его заслуга, по моему мнению, - в том, что он ушел от чисто теоретических методов, переведя их в инженерную плоскость. По сути дела он подвел под теорию управления такой инженерный фундамент, который и по сей день практически не изменился, стал классическим. Студенты всего мира сейчас учатся, используя именно его частотные методы.

Вторым нашим учителем был Вячеслав Вячеславович Петров - ныне, когда я пишу эти строки, уже покойный - член-корреспондент Академии наук. Он читал нам теорию нелинейных систем (тогда как частотные методы применяются к линейным системам). На основе этой теории можно объяснить работу таких приборов, как автопилот. Он имеет ряд нелинейностей - зона нечувствительности, зона насыщения, петля гистерезиса и т. д. Это так называемые существенные нелинейности, которые не поддаются линеаризации. Скачкообразные, разрывные функции в принципе не могут быть линеаризованы. А этой разрывностью и объясняются физические процессы, когда при управлении в цепях возникают автоколебания.

В. В. Петров был учеником школы Андронова. Это горьковская (ныне нижегородская) школа, в основу которой положены методы фазовой плоскости, и он блестяще преподал нам расчеты на базе этих методов. По сути дела В. В. Петров заложил второй теоретический "кирпич" в фундамент нашей новой специальности.

Назад Дальше