Жизнеописание Л. С. Понтрягина, математика, составленное им самим - Лев Понтрягин 8 стр.


* * *

На первом курсе университета я учился с огромным увлечением, приобретая новые знания просто потому, что они были для меня очень интересными. И никаких мыслей о том, как в дальнейшем могут быть использованы эти знания, у меня тогда не было. Один мой однокурсник из профессорской семьи сказал мне: "Ну, что ж, вы будете научным работником". В то время это высказывание было для меня совершенно бессодержательным.

На втором курсе я начал вести научную работу, которая в дальнейшем стала основным содержанием моей жизни. В то время я этого не понимал и не знал, что началась моя профессиональная деятельность.

Мои достижения были достаточно серьёзными. В настоящее время каждая из моих первых студенческих работ, а их было четыре, могла бы рассматриваться как хорошая кандидатская диссертация. Но тогда не существовало ни кандидатских степеней, ни кандидатских диссертаций.

Сам процесс математического творчества доставлял мне огромную радость. К этим новым радостям приобщил меня Павел Сергеевич Александров! Он не только дал мне материал для размышлений на своих лекциях и семинарах, но отнёсся ко мне с огромной человеческой теплотой. Он проявил большое внимание и интерес к моим первым математическим результатам, внимательно выслушивал мои доклады на топологическом семинаре, а затем редактировал и переводил на немецкий язык мои рукописи и передавал их для публикации в немецкие математические журналы.

Писание математических работ в первое время давалось мне с огромным трудом. Уже выполнив во всех деталях математическую работу, я совершенно не знал, как её писать. Не только план изложения представлял для меня трудность, каждая отдельная фраза не давалась мне. Я просто не знал, с чего начать изложение работы.

Научился писать только тогда, когда стал писать свою книжку "Непрерывные группы" в 1935 году. Написав значительную часть, я начал переписывать её заново и только тогда освоился с писанием математических текстов.

Мои первые математические работы были написаны очень плохо, и поэтому их переработка П. С. Александровым была нелёгким трудом, который он охотно взял на себя. Всем своим поведением и огромным трудом, вложенным в меня, П. С. Александров содействовал формированию из меня профессионального математика. В дальнейшем я ушёл из александровской тематики, но вести научную работу научил меня Александров.

Сразу же после того как я закончил второй курс, П. С. Александров уехал за границу и вернулся только тогда, когда я был уже студентом четвёртого курса. Я тут же возобновил свои занятия по топологии.

Когда я был студентом второго курса, 6 января 1927 года умер мой отец, уже очень больной человек, и мы с матерью остались вдвоём. После смерти отца нам дали пенсию 35 рублей в месяц и, кроме того, я в конце концов исхлопотал себе стипендию, также 35 рублей в месяц. Кроме денег студенты-стипендиаты имели тогда некоторые привилегии, в частности, я имел право раз в год сделать большую поездку по железной дороге бесплатно. Летом 1927 года мы имели с матерью возможность поехать в Крым. Это была моя первая поездка на море, и она произвела на меня неизгладимое впечатление.

Позже, до самого начала войны, мы каждое лето выезжали из Москвы, большей частью на море или в горы, но были также поездки в подмосковные санатории и под Ленинградом. Когда я стал аспирантом, нам были уже доступны санатории для научных работников, а до этого три раза мы ездили "дикарями".

В первый раз мы поехали в Севастополь и уже там выбрали местом своего отдыха Балаклаву. Там сняли комнату на месяц за 20 рублей. Питались частично дома, а частично в кафетерии. В Балаклаве была масса рыбы, особенно была вкусна копчёная скумбрия. Очень много времени я проводил на море. Приходил на пляж, лежал некоторое время на солнце и курил, затем плавал минут 20, затем возвращался на пляж, снова лежал на солнце и курил и так несколько раз. Результатом этих "процедур" было то, что я вернулся в Москву уже больным. У меня стала регулярно повышаться температура, по-видимому, что-то произошло с лёгкими. Подозревался туберкулёз, но чётко это не было подтверждено.

В 1929 году мы ездили в Гагры, где много времени проводили с Александровым и Колмогоровым. Перед поездкой в Гагры Александров водил меня к знаменитому врачу Фремгольду по поводу моей температуры. Но тот ничего чёткого не сказал. Постоянное повышение температуры - 37–37,2° всю жизнь мучило меня.

И вот в 1957 году произошла чёткая вспышка туберкулёза. После интенсивного лечения температура на некоторое время от меня отстала, а потом возобновилась и перешла в хроническое воспаление лёгких, от которого я освободился только в 80-м году. По настоянию жены мы перешли на вегетарианство и частичное сыроедение. Только диета помогла мне.

Свой третий курс ввиду отсутствия Александрова я провёл без топологии. Зато я слушал очень интересные лекции профессора Д. Ф. Егорова по разным предметам и особенно понравившийся мне курс интегральных уравнений. На третьем же курсе я заинтересовался тензорным анализом и римановой геометрией, слушая лекции В. Ф. Кагана и участвуя в его семинаре. Хотя сам предмет мне казался очень интересным, но лекции Кагана удручали меня своей чудовищной медлительностью, а мои попытки заняться самостоятельной научной деятельностью в этой области были встречены холодно и рассматривались на семинаре Кагана, по-видимому, как некое высокомерие студента, который суёт свой нос куда не надо. Думаю, что В. Ф. Каган судил о способностях студентов по своим собственным.

На третьем курсе я сделал небольшую работу по римановой геометрии. Риманов тензор, как известно, возникает в римановом пространстве при параллельном переносе вектора по малому замкнутому контуру. В лекциях и на семинаре Кагана за замкнутый контур принимался треугольник и вычисления производились очень уродливо. Я произвёл вычисления, взяв замкнутый контур, зависящий от малого параметра. Вычисления получились гораздо более изящные. Здесь я впервые столкнулся с рассмотрением малого параметра в дифференциальных уравнениях. Эту свою работу я сообщил на семинаре Кагана, но никакого внимания она там не привлекла, хотя, как я думаю, она всё же содержала важное методическое достижение.

Аналогичное достижение в области топологии несомненно привлекло бы внимание Александрова. Внимательное отношение к самостоятельной деятельности студентов было характерно для школы Н. Н. Лузина, из которой вышел Александров.

К началу четвёртого курса П. С. Александров вернулся из-за границы и привёз с собой ещё профессора фрейлейн Эмми Нётер. И я вновь вернулся к топологии и, кроме того, слушал лекции фрейлейн Нётер по современной алгебре. Лекции эти поражали своей отделанностью, отличались в этом смысле от лекций Александрова, но не были засушенными и казались мне очень интересными. Лекции свои фрейлейн Нётер читала по-немецки, но они были понятны ввиду необычайной ясности изложения.

На первую лекцию этого известного немецкого математика собралось огромное количество народа. Здесь произошло совершенно неожиданное происшествие: нижняя юбка фрейлейн Нётер начала постепенно сползать. Всё внимание слушателей было сосредоточено на этом. В полной тишине происходило сползание юбки, а фрейлейн Нётер героически продолжала читать лекцию. Лекции фрейлейн Нётер существенно отразились на моём математическом мировоззрении, что сказалось прежде всего на дипломной работе, где я заново переизложил в усовершенствованном виде свои результаты по теореме двойственности 2-го курса, сильно усовершенствовал их как в геометрическом, так и в алгебраическом направлениях. В дальнейшем я очень охотно обучал своих аспирантов абстрактной алгебре. И один раз даже читал обязательный курс линейной алгебры для студентов. Курс этот был построен в стиле Нётер.

Закончив четвёртый курс университета и защитив дипломную работу, я тем самым закончил университет. В те времена молодёжь не мучили долголетней учёбой. В средней школе полагалось учиться девять лет, в университете - четыре года. Мне и сейчас кажется, что этого достаточно. Во всяком случае, к концу четвёртого курса я уже получил острое отвращение к сдаче экзаменов. Настолько острое, что от сдачи одного из экзаменов я уклонился, применив "недостойный" приём. Я упросил Александрова вписать мне в зачётную книжку сдачу экзамена по конечным разностям, о которых он читал, обещая выучить потом. Но так никогда и не выучил.

После университета

Закончив университет, я в течение двух лет проходил университетскую аспирантуру под руководством П. С. Александрова.

Это было время решительных преобразований. Старая система аспирантуры с многочисленными огромными экзаменами разрушилась, новая ещё не была заведена. Таким образом, в аспирантуре я просто занимался математикой, да ещё получал 175 рублей стипендии, что радикально меняло моё материальное положение.

Окончание аспирантуры за два года вовсе не означало, что я выполнил что-то досрочно или защитил диссертацию. Диссертаций тогда вовсе не было, просто начальство решило, что с меня хватит. И перевело меня в сотрудники Института математики при университете на зарплату 170 рублей. Так что я даже потерпел некоторый материальный ущерб.

Правда, уже после первого года аспирантуры я стал доцентом университета с зарплатой 47 рублей и читал лекции совместно с профессором О. Ю. Шмидтом. Лекции были посвящены абстрактной алгебре и теории групп. Читали мы их по очереди. Однако на каждой лекции присутствовали оба.

В мои обязанности входило утром в день лекции сообщить О. Ю. Шмидту о предстоящей лекции. Дома телефона у меня не было, моя мать ходила в аптеку и звонила Шмидту. До сих пор помню, какой страх я испытал перед своей первой лекцией. Когда-то очень давно я слушал впервые Андроникова, он как раз рассказывал о своём страхе перед первым выступлением на эстраде. Мои переживания перед первой лекцией были очень похожи на его переживания перед первым выступлением. Разница заключалась только в том, что, когда я заговорил перед аудиторией, мой страх мгновенно исчез и всё внимание было сосредоточено на том, что я говорю.

В течение многих лет я испытывал некоторую тревогу, похожую на страх, перед каждой своей лекцией. И всегда страх мгновенно исчезал, как только я приступал к лекции. Позже эти страхи прекратились. Даже лекции на английском языке я воспринимал без тревоги. Помню, как спокойно я шёл на свой пленарный доклад на Международном конгрессе в Ницце в 1970 году. Я спокойно делал его на английском языке.

Различного рода страхи, тревоги, связанные с профессиональной работой, всегда преследовали и продолжают преследовать меня теперь. Каждое новое начинание вызывает тревогу. Неясно, справлюсь ли я с ним. Незаконченная научная работа вызывает страх, что я вообще не сумею её закончить и несколько лет тяжёлого труда пропадут даром. Законченная научная работа вызывает страх тем, что в ней может обнаружиться ошибка.

Все эти страхи перед возможной неудачей составляют тяжёлую эмоциональную сторону профессиональной работы. И в то же время это является важнейшим стимулом для хорошего выполнения работы. Страх перед неудачей вынуждает меня самым тщательным образом подготавливать всякое мероприятие, а тщательная подготовка приводит к тому, что работа выполняется хорошо, что приносит огромное моральное удовлетворение. Только хорошо выполненная работа доставляет радость! Выполненная небрежно, она вызывает отвращение и постепенно вырабатывает в человеке аморальное отношение к труду.

Я склонен думать, что добросовестное отношение к труду является прирождённым свойством каждого человека, а чтобы развить в нём аморальное отношение к труду и склонность к халтуре, нужно приложить большие усилия. Для этого нужно создать особенно неблагоприятные условия работы. Эти неблагоприятные условия могут выражаться, например, в противоестественно низкой оплате труда или в том, что плоды труда используются столь нерационально, что практически идут впустую. И то, и другое у нас имеется в достаточной мере.

* * *

Окончив университет в 1929 году и освободившись тем самым от экзаменов, так как в аспирантуре их не было, я все свои силы направил на научную работу, которую сразу же повёл с очень большим успехом. Каждый год я публиковал по две-три работы, причём по меньшей мере одна из них была действительно замечательной. В первые годы тематика этих работ была тесно связана с моими студенческими работами или вытекала из них. При этом иногда, исходя из старых задач, я приходил к совершенно новым.

Стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства, я пришёл к необходимости рассмотрения группы характеров произвольной коммутативной счётной группы, т.е. столкнулся с T-теорией топологических групп, с топологической алгеброй. В дальнейшем это привело меня к построению общей теории топологических групп.

Я пришёл к топологической алгебре, стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства. Не знаю, как пришёл к ней А. Н. Колмогоров, но он сформулировал мне следующее общее положение: "Математический объект, в котором одновременно определены алгебраические и топологические операции, причём алгебраические операции непрерывны в заданной в нём топологии, должен быть сравнительно конкретным". На этом пути Колмогоров пытался построить аксиоматику пространств постоянной кривизны, т.е. единую аксиоматику для пространства Евклида, Лобачевского и Римана.

Передо мной он поставил следующую конкретную задачу: доказать, что всякое связное локально компактное топологическое тело является либо телом действительных чисел, либо телом комплексных чисел, либо телом кватернионов. Для коммутативных тел, т.е. полей, я решил её очень быстро - за неделю или две. И сообщил об этом П. С. Александрову. И вот мы трое собрались в маленькой комнате Павла Сергеевича в Старопименовском переулке. Колмогоров с оттенком иронии сказал: "Ну что же, Лев Семёнович, я слышал, вы решили мою задачу? - Расскажите!" Я начал рассказ, и первое же моё утверждение Колмогоров объявил неверным. Но я в нескольких словах объяснил ему его ошибку. Колмогоров сказал: "Да, да, вы правы! По-видимому, задача, которую я вам поставил, не так трудна, как я думал".

Потом я решил задачу и для случая некоммутативных тел, но это заняло у меня уже около года. Колмогоров тщательно отредактировал эту мою работу и устроил в ней 33 леммы. В таком виде она и была опубликована. Я и сейчас считаю этот мой результат в числе лучших моих достижений.

С Колмогоровым я познакомился летом 1929 года в Гаграх, где мы с матерью провели целых два месяца. Я часто встречался там с Александровым и Колмогоровым, Во всяком случае, мы очень часто купались вместе. Александров и Колмогоров приехали в Гагры не одновременно. Сперва приехал Александров и стал ждать Колмогорова, который шёл через перевал, притом совершенно один, что очень беспокоило Александрова и меня. Беспокойство это переросло в мучительную тревогу, когда Колмогоров не явился к назначенному сроку.

Александров за несколько лет до этого потерял своего друга, Урысона, при трагических обстоятельствах. Урысон утонул в Атлантическом океане во время сильного прибоя на глазах у Александрова. В Гаграх Александрову чудилась гибель только что обретённого нового друга. Колмогоров опоздал на несколько дней. Оказалось, что при переходе через перевал он уронил сумку с документами в пропасть и не мог её достать. Когда он ночью спустился в Сочи, то женщина-милиционер задержала его как подозрительную личность и отправила в дом предварительного заключения, где он просидел четыре или пять дней, тщетно добиваясь, чтобы его выпустили или навели о нём справки. Наконец это удалось сделать, и тогда ему была возвращена свобода.

* * *

Топологическая алгебра, точнее, теория топологических или непрерывных групп была предметом моей научной и педагогической деятельности в течение нескольких лет. Большой успех в этой области был достигнут мною на основе только что появившейся тогда замечательной работы венгерского математика Хаара. В ней Хаар построил на локально компактной топологической группе инвариантную меру. Это позволяло строить и решать на группе интегральные уравнения, так что можно было применить данную ранее Германом Вейлем теорию представлений компактных групп Ли. Работа Хаара была опубликована в американском журнале "Annals of Mathematics", где членом редакции был фон Нейман. Последний сразу же воспользовался замечательным результатом Хаара, решив при помощи него пятую проблему Гильберта для компактных групп. Я, конечно, мог использовать результат Хаара только уже после Неймана. Для компактных групп я получил результат несколько более сильный, чем у Неймана, но это уже не было решением проблемы Гильберта, так как она была решена Нейманом. Кроме того, я изучил локально компактные коммутативные топологические группы. Моя работа о локально компактных коммутативных группах была послана в тот же журнал. Лефшец, который в то время находился в Москве, процитировал мне письмо Неймана, в котором писал, что от Понтрягина получена действительно замечательная работа.

По теории непрерывных групп, в частности групп Ли, я прочёл несколько спецкурсов и провёл несколько семинаров. Получил важные собственные результаты. И мне захотелось написать книгу. К 1935 году я уже был готов к написанию большой монографии "Непрерывные группы". В неё вошли: общая теория топологических групп, мои собственные результаты, а также очень хорошее только что полученное мною изложение теории групп Ли. Я писал эту книгу два года и в 1937 году сдал в печать. На этом я научился писать математические работы. В 40-м году за эту монографию мне была присуждена Сталинская премия 2-й степени. Книга очень скоро была переведена в США на английский язык и сильно увеличила мою международную известность.

Назад Дальше