Миллениум мифы (сборник) - Николай Векшин 2 стр.


Аналогичным образом трактуется реликтовое излучение. Оно якобы имеет красное смещение около 1000. Эта цифра верна лишь в том отношении, что миллиметровый диапазон примерно в тысячу раз "красней", чем оптический световой диапазон. Но ведь нет никаких оснований, кроме желания релятивистов, брать оптический диапазон за шкалу отсчёта. Интерпретация реликтового излучения релятивистами такова: "Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света". Грандиозно. Но бездоказательно. И, как уже отмечалось, противоречит эйнштейновскому тезису о предельной скорости света (для материальных объектов).

В брошюре А. И. Староверова "От парадокса Эренфеста – к стационарности Вселенной" (2009) был сделан расчет длины волны реликтового излучения в рамках классической физики.

λ

R = c (λ – λ0) / H λ

Здесь R – расстояние до дальней галактики, с – скорость света, λ – регистрируемая длина световой волны, λ0 – исходная длина, H – постоянная Хаббла. Если, принять R = 4000 Мпк (радиус сферы реликтового излучения, доходящего до нас) и взять λ0 = 1 мкм (край области оптического излучения галактик), то получается, что λ = 500 мкм, т. е. это как раз область реликтового излечения. Никакой релятивизм с расширением тут не понадобился. В указанной брошюре релятивистская гипотеза о расширении Вселенной была подвергнута справедливой критике. Наличие "красного" смещения у галактик было легко объяснено в рамках классической физики.

Теперь процитирую профессора А. В. Засова (физ. ф-т МГУ): "Все недоразумения… связаны с тем, что для наглядности рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета… Отсюда представление и о Взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения…"

Какие же есть более веские причины космического красного смещения? Их три: 1) Пониженная, по сравнению с Солнцем, температура далёких звёзд, 2) Квантованная потеря энергии звёздных фотонов при их прохождении через межзвездную пыль (это принято называть "усталостью" фотонов), 3) Аналогичная потеря энергии при прохождении через электромагнитные поля.

Первая причина вполне очевидна. Чем ниже температура тела, тем меньше энергия его свечения. В первом приближении это описывается законом Вина для равновесного спектра теплового излучения черного тела. В оптическом диапазоне горячие звёзды светят в "синей" области, а холодные – в "красной". Но излучение звёзд обычно не только тепловое. Оно сильно отклоняется от закона Вина. Например, при наличии ядерных реакций излучение может быть интенсивным в "синей" области, УФ и рентгеновской области даже при низких колебательных температурах. Если в нашей галактике, (в частности – на Солнце) ядерные реакции идут сильней, чем в других галактиках, то излучение последних окажется более "красным". При этом может наблюдаться не только общее смещение спектра, но и красный сдвиг отдельных спектральных линий конкретных атомов и атомных частиц.

Вторая причина тоже существенна. Межзвездная пыль имеет низкую плотность, но за счет гигантских расстояний на ней происходит квантованное "дробление" энергии фотонов: каждая молекула холодной пыли способна забирать на себя не менее одного кванта колебательной энергии, что делает пролетающий фотон более "красным". Этот процесс известен в спектроскопии как комбинационное рамановское рассеяние света. Релятивисты, оппонируя этой точке зрения, утверждали, что при рассеянии свет должен был бы отклоняться, но этого не наблюдается. Да, отклонение не наблюдается. Но не потому, что нет рассеяния, а потому что релятивисты перепутали рамановское рассеяние (на отдельных атомах или молекулах, с изменением длины волны, но без отклонения в сторону) с релеевским (оно происходит на частицах, без изменения длины волны, но с отклонением). Нужно подчеркнуть, что межзвездная "пыль" состоит не столько из частиц, сколько из отдельных атомов и молекул. Поэтому световая волна сильно подвергается рамановскому рассеянию, но мало – релеевскому.

Третья причина тоже возможна. Вселенная вся пронизана электромагнитными волнами в диапазоне от метров и сантиметров до микрометров. При взаимодействии оптической волны с радиоизлучением, реликтовым излучением и инфракрасным излучением есть вероятность перераспределения энергии между ними.

Элементарные частицы и атом

Количество разнообразных элементарных частиц (бозоны, фермионы, лептоны, кварки, нейтрино и т. д. и т. п.) предсказанных теоретиками и обнаруженных (или пока не обнаруженных) экспериментаторами исчисляется нынче великим множеством. При этом ученые относятся к ним как к реальным объектам, исходно существующим в природе.

Но тут уместно вспомнить поучительное мнение выдающегося немецкого физика Вернера Гейзенберга, одного из основателей квантовой механики. Когда студенты стали спрашивать его про внутреннее устройство элементарных частиц, Гейзенберг попросил их взглянуть в окно, смотрящее на здание бассейна, и ответить на вопрос: люди, выходящие из здания одетыми в пальто, в самом бассейне плавают тоже в пальто? Гейзенберг правильно понимал, что элементарные частицы как таковые не существуют. Они возникают лишь в результате взаимодействия. Если перенести его точку зрения с элементарных частиц на атом, то можно сказать, что никаких электронов, протонов и нейтронов в атоме нет. Он из них не состоит. Они возникают лишь в момент взаимодействия атомов с электромагнитным полем или иным излучением, которое исследователь направляет на них. Такой взгляд позволяет обойтись без гипотезы Бора о фиксированных внутриатомных орбитах, по которым вращаются электроны. Бору пришлось постулировать, что отрицательно заряженный электрон может вращаться вокруг положительно заряженного ядра. Этот парадокс, противоречащий закону Кулона о притягивании разноименных зарядов, невозможно преодолеть ни моделью электрона в виде частицы, крутящейся по орбите вокруг ядра, ни моделью о размытой траектории в виде электронного облака. Но, если стать на позицию Гейзенберга, парадокс исчезает. Хотя Гейзенберг по сути прав, но модель Бора более наглядна и удобна для применения.

Формула E = mc

Глядя на формулу E = mc, почти любой скажет, что это – великая формула Эйнштейна о связи между энергией и массой. Но на самом-то деле кое-что тут не совсем так.

Во-первых, эту формулу придумал вовсе не Эйнштейн, а Пуанкаре. На это указал В. И. Арнольд в статье "Недооцененный Пуанкаре" (Успехи математических наук, 2006, т.61, № 1, с. 3–24). Причем, Эйнштейн, тщательно изучивший (по совету Минковского) теорию Пуанкаре, никогда не ссылался на первоисточник и только в 1945 году признался в этом. Кстати, знаменитые "преобразования Лоренца" в эйнштейновской специальной теории относительности тоже принадлежат не Эйнштейну и даже не Лоренцу, а всё тому же самому Пуанкаре.

Во-вторых, ничего особенно "великого" в выше приведенной формуле нет. Основываясь на правиле сохранения размерности физических величин, эту формулу легко мог бы вывести любой старшеклассник, причем, ad initio – без каких-либо предварительных сложных математических преобразований. Действительно, если левую часть выразить, к примеру, в джоулях, а массу в правой части в граммах, то коэффициент пропорциональности между ними неизбежно будет иметь размерность квадрата скорости. Это азбука физики. То, что это не просто скорость, а именно скорость света, легко получается путём подстановки численных значений E и m.

Пуанкаре, получив эту формулу в ходе сложных математических преобразований, отнёсся к ней как чистый теоретик, увлеченный лишь математическими изысками. Несомненной заслугой Эйнштейна является то, что он обратил на эту формулу пристальное внимание и осознал, как физик, что из массы можно черпать огромную энергию. Не случайно именно Эйнштейн впоследствии стал одним из создателей ядерной бомбы.

В заключение уместно заметить, что многие "великие" формулы физики довольно тривиальны. Действительно, если какая-либо формула имеет вид функции Y = Z X, то коэффициент пропорциональности Z (размерность и её величина), устанавливающий связь между физическими параметрами X и Y, получается автоматически – путем деления Y на X. К примеру, в знаменитой формуле E = hν энергия E и частота ν связаны через постоянную Планка h, которая тривиальным образом просто выравнивает размерность правой и левой части формулы.

Дарвиновская теория и переходные виды

Еще каких-нибудь три десятка лет назад теория Дарвина была общепринятой и фигурировала в учебниках как закон природы. В наше время стало модным не только критиковать дарвинизм, но и говорить о его полной несостоятельности.

Отсутствие переходных видов при палеонтологических раскопках обычно выдвигается как один из сильнейших аргументов против эволюционной теории Дарвина (кстати, он сам прекрасно понимал "загвоздку" и писал об этом). Но фокус в том, что указанный аргумент исходит из предположения, кажущегося очевидным, что полезные признаки должны постепенно накапливаться и постепенно подвергаться естественному отбору.

Но давайте задумаемся. Мутация, согласно генетике, представляет собой мгновенное изменение в генотипе. Это может быть небольшое изменение или большое. Если изменение небольшое, то никаких особых преимуществ ни данная особь, ни её потомство не получают (по сравнению с другими особями популяции). Более того, эта особь, в которой произошла мутация, согласно законам статистики, в дикой природе погибнет, причем, скорее всего, до того, как обзаведется потомством. Но вот если вдруг изменение в генотипе очень сильное и при этом радикально полезное, то вероятность выживания резко возрастает. Такая мутация представляет собой резкий скачок. Но в этом случае должен возникать принципиально новый вид, а вовсе не переходный вид.

Тут, по ходу дела, нужно заметить, что мутации соматических клеток не наследуются. Наследуются только те мутации, которые происходят в половых клетках. При слиянии мужских и женских хромосом таких клеток возникает потомство, которое теперь содержит мутацию во всех клетках, в том числе – соматических, которые формируют фенотип и подвергаются естественному отбору.

Современная теория эволюции утверждает, что новые виды животных и растений возникают в природе благодаря мутациям в ДНК. Мутация представляет собой локальное изменение в молекуле ДНК. Предположим, что произошла полезная точечная мутация в ДНК. Ведет ли это к появлению нового вида? Нет. Такая мутация приводит только к возникновению какого-либо нового качественного признака у того же самого вида, ибо количество хромосом остаётся прежним. Здесь необходимо особо подчеркнуть, что в природе один вид генетически отличается от другого, прежде всего, количеством хромосом (а также их размерами), но вовсе не последовательностью нуклеотидов ДНК. К примеру, у человека – 46 хромосом, а у обезьяны – 48. Человек не скрещивается с обезьяной, хотя последовательность нуклеотидов человеческой и обезьянней ДНК совпадает на 98 %. Между прочим, сходство с ДНК свиньи – 95 %! Именно разница в числе хромосом и их размерах полностью отделяет один вид от другого и делает невозможным размножение потомства, даже если оно будет специально получено.

Модель постепенного накопления небольших мутаций, на которую сделала упор современная "нейтралистская" теория эволюции (Кимура и его последователи) хорошо объясняет появление новых признаков, но никак не может объяснить возникновение видов как таковых.

Как возникает скачкообразное изменение количества хромосом? Скорее всего, это может происходить в процессах клеточного мейоза и митоза, причем, либо на ранней стадии эмбриогенеза (пока клетки не дифференцированы) или у самцов и самок в процессе сперматогенеза и оогенеза.

Итак, нужно принять, что новый вид возникает в природе за счёт изменения количества хромосом (резкий скачок), а не многочисленных точечных изменений в молекуле ДНК. Тогда никаких переходных видов не требуется. Вот почему палеонтологи не обнаруживают переходных видов. А те переходные виды, которые палеонтологами всё же обнаруживаются, относятся, по-видимому, не к новым видам, а к подвидам.

Homo sapiens

Считается, что первые представители Homo sapiens появились на земле 200 тысяч лет назад, неандертальцы – 100 тысяч лет назад. Но, во-первых, не факт, что это были предки современного человека. И об этом говорят многие ученые. Во-вторых, само название Homo sapiens – человек разумный – весьма не точное, ибо даже современный человек чрезвычайно не разумен (разумны лишь отдельные его представители, да и то не всегда), не говоря уже о древних неандертальцах, питекантропах, кроманьонцах, австралопитеках и прочих. В-третьих, никаких строгих доказательств указанных дат не существует.

Радиоуглеродный метод, принятый в палеонтологии и археологии для определения дат, весьма спорен. Хотя за этот метод в 1911 году Либби получил Нобелевскую премию, но через сто лет оказалось, что датировки по изотопу углерода не столь точны, как казалось Либби и его последователям. Причем, дискуссии на эту темы шли всё время (например, статьи Ивлева в журнале "Биофизика" в 80-х годах). Метод даёт слишком большие погрешности, причем, не только из-за загрязнения археологических находок современными микробами и пылью, но и из-за несовершенства самого метода. К примеру, археолог Милойчич обнаружил, что некоторые современные животные и растения – моллюски, и розы – показывают такую радиоактивность по углероду-14, которая соответствует возрасту в 1200 и 360 лет, соответственно.

А что уж говорить о древних артефактах из далёкого прошлого! Особенно спорным является допущение Либби о том, как стабильно вёл себя изотоп углерода на Земле в течение тысяч и миллионов лет. Учёный не учёл, что геофизика планеты и круговорот углерода на ней подвержены резким перепадам.

И, что ещё более важно, в общепринятой хронологии Земли отсутствует независимый контроль дат каким-либо другим методом, не радиоуглеродным.

Интересно, что Ньютон в своей книге "Исправленная хронология древних царств" высказал большие сомнения в общепринятой хронологии исторических событий. Нужно отметить, что Ньютон, как настоящий ученый, весьма скурпулёзно проанализировал множество источников о давних событиях, причем, особо тщательно – Библию.

Некоторые ученые сегодня склоняются к точке зрения Ньютона. По их мнению, история человечества и вообще всей планеты Земля гораздо короче, чем та, которая описывается нынче традиционно, основываясь на радиоуглеродном методе.

Считается, что современный человек появился 80 или 40 тыс. лет назад (по разным радиоуглеродным оценкам разных археологических артефактов). Анализируя митохондриальную ДНК, генетики пришли к заключению, что все люди на Земле имеют общую мать – Еву. Возраст Евы учёные оценили, опять-таки полагаясь на радиоуглеродный анализ, в 80 тысяч лет.

Но возникает закономерный вопрос: почему физиологически полноценный Homo sapiens появился 80 тысяч лет назад, а история цивилизации насчитывает всего 10–12 тысяч лет? На этот парадокс у большинства ученых ответа нет.

Однако если предположить правоту Дэникена и других смелых энтузиастов, говорящих о том, что человек возник в результате генетического эксперимента инопланетян, то всё становится на свои места. Кстати, тут уместно заметить, что Дэникен вовсе не был первый, кто по серьёзному заговорил об инопланетянах. Одним из первых был советский ученый Казанцев, про которого почему-то совсем забыли.

Существует масса древних текстов (Библия, шумерские таблички, индийские веды и т. д.), в которых весьма точно (хотя мифологически) и сходно описаны громыхающие ракеты, спускающихся с неба, летательные аппараты вроде вертолётов, лучи огня вроде лазеров и т. д. Тщательный научный анализ текстов можно найти в книге Арзуняна "Бог был инопланетянин".

Имеется множество археологических свидетельств об инопланетянах (или точней – о каких-то сверх-существах). Тут и рисунки в пустыне Наска, и многотонные плиты в Баальбеке, и гигантские платформы Пума-Пунку в Тиуанако, и фигурки скафандрах, и т. д. и т. п. Количество таких вещественных доказательств огромно. Но на самом деле достаточно было бы одного: египетские пирамиды. Каких только идиотских объяснений ни навыдумывали в своё время специалисты-археологи, чтобы объяснить чудесное появление каменных глыб весом десятки тонн в Египте, на острове Пасхи, в болотах Боливии! Что касается факта обработки поверхности глыб с точностью до долей миллиметра (как будто алмазной пилой или мощным лазером!), то большинство "специалистов" хранили молчание, ибо тут никакой заумной глупостью отделаться было невозможно.

А как объяснить, что в излучине реки Нигер в Африке живёт племя дикарей догонов, обладающих точными астрономическими сведениями про Сириус и другие звёзды? Эти сведения передаются у них от поколения к поколению, причем, не только устно. Они запечатлены в древних пещерных наскальных рисунках!

Таких фактов более чем предостаточно для принятия гипотезы об инопланетянах, их роли в создании Homo sapiens и развитии человеческой цивилизации. Но большинство ученых упорно открещиваются от такой идеи. И только в последние годы некоторые из них обратили свои взоры в эту сторону.

Кстати, всё выше сказанное не отрицает дарвиновскую теорию. Оно лишь объясняет, почему человек не остался в животном мире, а стал развиваться как цивилизованное существо.

Кратковременная и долговременная память

Общепринято, что у человека есть два вида памяти: кратковременная и долговременная. Этой догме давно учат и школьников на уроках биологии, и студентов ВУЗов. В интернетовской Википедии можно прочесть в пользу двух видов памяти такие сведения (привожу "выжимку", своими словами):

Герман Эббингауз, проводивший опыты на себе, установил, что если заучивать список бессмысленных слов, то после первого прочтения обычно удаётся запомнить не более семи. Это – объём кратковременной памяти. Количество сохранившейся информации зависит от времени с момента заучивания до момента проверки. Легче запоминаются первые и последние элементы. Ёмкость кратковременной памяти можно немного увеличить за счёт смысловой или ассоциативной группировки элементов. Кратковременная память позволяет без повторения помнить что-либо в течение нескольких секунд, вплоть до одной минуты. Эта память осуществляется за счет временных нейронных связей из фронтальной и теменной коры (сюда попадает информация из сенсорной памяти). Считается, что кратковременная память основана на электрофизиологических механизмах, поддерживающих возбуждение связанных нейронных сетей.

Назад Дальше