100 знаменитых изобретений - Пристинский Владислав Леонидович 10 стр.


В основу процесса экструдирования положено свойство металла повышать пластичность при высоком гидростатическом давлении. До 90-х годов XIX в. метод экструзии применяли исключительно для обработки высокопластичных металлов – свинца, олова и их сплавов. Полуфабрикатами для экструдирования служили трубки и прутки. С 70-х годов XIX в. возникает новая область использования экструзионных прессов – электрокабельное производство. В 1879 г. французский инженер Барелл сконструировал гидравлический пресс для наложения свинцовой оболочки на электрический кабель, что позволило соединить страны и континенты телефонными и телеграфными кабелями. Разработанный Барелл ом способ наложения защитной оболочки на электрические кабели сохранился до сих пор.

Развитие процесса экструдирования побудило инженеров-металлургов перенести полученный опыт на прессование труднодеформируемых металлов. Особенно большой спрос был на трубы из меди и ее сплавов. Впервые проблему прессования медных труб и прутков осуществила в 1893 г. фирма "Троус Коппер Компани", построившая специальный пресс высокого давления. Для прессования применяли нагретую до температуры 850 °C медную заготовку. Ее помещали в вертикальный контейнер гидравлического пресса. Затем сверху в контейнер опускался плунжер, соединенный с гидросистемой пресса, который прошивал заготовку в центре. При этом металл выпрессовывался вверх, образуя короткий полый цилиндр. Так появился обратный метод прессования металла.

Прессование стало важной областью обработки металлов давлением. С 40–50-х годов XIX в. предпринимались попытки использовать гидравлический пресс для ковочно-штамповочных работ. В 1851 г. гидравлический ковочный пресс экспонировался на Международной промышленной выставке в Лондоне. Этот пресс, снабженный четырьмя гидравлическими цилиндрами, обеспечивал давление в 1500 тонн и предназначался для штамповки небольших предметов малой толщины.

Начало промышленному применению гидравлических прессов положил английский инженер, директор мастерских государственных железных дорог в Вене Дж. Газвелл. Предприятие было расположено в черте города, вблизи жилых построек, и установка на нем парового молота оказалась невозможной. Газвелл спроектировал пресс, который в 1859–1861 гг. был изготовлен и установлен в железнодорожных мастерских. Этот пресс обслуживался мощной паровой машиной двойного действия с горизонтальными цилиндрами диаметром 1200 миллиметров. Благодаря значительной разнице между диаметрами парового и гидравлического цилиндров, удалось создать высокое давление – 400 атмосфер. Вода насосами накачивалась в рабочий цилиндр пресса, плунжер которого приводил в действие подвижную траверсу с укрепленным на ней верхним бойком или штампом. Движение подвижной траверсы направлялось четырьмя массивными колоннами. Подъем траверсы осуществлялся штангой, связанной с поршнем небольшого гидравлического цилиндра, расположенного над прессом.

Стол пресса Газвелла был снабжен наковальней, которую при необходимости можно было менять. Управление прессом производилось вручную при помощи рычагов. Пресс мог осуществлять периодическое и непрерывное давление с различной скоростью. Он предназначался для штамповки паровозных деталей.

Первые построенные Газвеллом гидравлические прессы были мощностью 700, 1000, 1200 тонн. Позже были изготовлены более крупные прессы. Они успешно демонстрировались на Всемирных промышленных выставках в Лондоне (1862 г.) и в Вене (1873 г.).

Для того чтобы увековечить выдающееся изобретение Газвелла, чертежи его первых прессов были переданы на хранение в консерваторию искусств в Вене.

Пресс Газвелла предназначался для штамповки деталей. Поэтому во второй половине XIX в. велась работа над созданием специального гидравлического пресса для ковки слитков. Основоположником этого направления стал английский инженер и предприниматель Дж. Витворт. В 1865 г., ознакомившись с работами Газвелла, он применил гидравлический пресс для прессования жидкой стали с целью получения однородного беспузырчатого слитка. Продолжая исследования в области прессования, Витворт стремился использовать гидравлические прессы для получения необходимых полуфабрикатов и готовых изделий непосредственно из слитков.

В 1875 г. Витворт запатентовал во Франции гидравлический пресс. Он состоял из 4 колонн, укрепленных в фундаментной плите. На верхней части колонн располагалась неподвижная траверса с двумя гидравлическими подъемными цилиндрами. Они перемещали вверх и вниз подвижную траверсу, в нижней части которой был установлен штамп.

Оригинальность этого изобретения состояла в том, что были соединены подвижная траверса, несущая гидроцилиндр, и приспособление для быстрого подъема, спуска и установки траверсы в нужном положении. Такая компоновка при коротком ходе поршня позволяла обрабатывать изделия различной высоты. В прессе был предусмотрен механизм для поворачивания заготовки, что помогало более равномерно обрабатывать заготовки по всему объему.

Пресс Витворта впервые был применен для ковки слитков в 1884 г. Тогда ковка орудийных стволов велась при помощи паровых молотов. С появлением пресса Витворта они стали отходить на задний план. Преимущества гидравлических прессов перед паровыми молотами были бесспорны. Так, для ковки орудийного ствола из слитка массой 36,5 тонн на 50-тонном паровом молоте требовала 3 недели работы и 33 промежуточных нагрева слитка. Использование гидравлического пресса для ковки слитка массой 37,5 тонн сократило срок ковки до 4 дней при 15 промежуточных нагревах.

Прессы Витворта широко применялись не только для ковки слитков, но и в производстве броневых плит, изготовлении стволов артиллерийских орудий, крупных валов. Они выпускались мощностью 2000, 5000 и 10 000 тонн. Крупнейшим был пресс мощностью 14 000 тонн, установленный в 1893 г. на Вифлеемском заводе в США. Для привода этого пресса применялись паровые двигатели мощностью 16 000 л. с. Колонны пресса, поддерживающие верхнюю траверсу, располагались на расстоянии 4,4 м друг от друга. Пресс имел два гидравлических цилиндра диаметром 1270 мм. Ход поршня составлял 1430 мм.

В конце XIX в. происходила замена тяжелых паровых молотов гидравлическими ковочными прессами. В 1893 г. был демонтирован 125-тонный молот на Вифлеемском заводе в США. Завод Круппа в Эссене заменил 75-тонный паровой молот 2000-тонным прессом. Отказался от 108-тонного молота завод в Терни (Италия), установив вместо него 4500-тонный пресс.

К концу 20-х – началу 30-х годов XX в. в Германии создаются новые конструкции тяжелых гидравлических прессов. В 1930 г. был построен самый крупный на то время гидравлический штамповочный пресс мощностью 6300 тонна-сил (61,8 МПа) для изготовления авиационных деталей из легких сплавов. В 1931 г. в Германии же были построены два штамповочных пресса мощностью 15 000 тонна-сил (147 МПа). В 1939 г. французские машиностроители строят пресс мощностью 20 000 тонна-сил (196 МПа).

Среди наиболее важных усовершенствований, повысивших эффективность работы прессов, следует отметить введение в схему привода мультипликатора (от латинского "умножающий", "увеличивающий"). Мультипликатором служил паровой цилиндр. Он устанавливался в верхней части пресса. Его поршень при помощи штока соединялся с гидравлическим цилиндром. Для того чтобы произвести нажатие на поковку, в верхнюю часть мультипликатора впускался пар под давлением 6–10 атм. За счет введения мультипликатора можно было довести рабочее давление до 600 атм.

Прессы, оснащенные мультипликатором, получили название парогидравлических. Их стоимость по сравнению с чисто гидравлическими, оснащенными насосами и аккумуляторами высокого давления, была значительно ниже. Но эксплуатация парогидравлических прессов сопряжена с большим расходом пара.

У гидравлического пресса с насосным приводом в отличие от парогидравлического есть возможность осуществлять непрерывный рабочий ход. У гидравлического пресса с аккумулятором сеть, подводящая воду, постоянно находится под высоким давлением (250–300 атм). Установка с мультипликатором имеет более короткую сеть, находящуюся под давлением лишь во время рабочего хода. Это позволило увеличить давление воды до 400–600 атм. Такое высокое давление позволило значительно уменьшить диаметр рабочих цилиндров парогидравлических прессов, сделав их более компактными и дешевыми.

Интенсивное развития серийного и массового производства автомобилей в 40–50-е годы XX в. вызвало рост удельного веса процессов объемной и листовой штамповки. А применение прессовых кузнечных машин подняло эти процессы на более высокий уровень. На автомобильных и тракторных заводах стала использоваться высокопроизводительная горячая штамповка в многоручьевых штампах. В автомобильной, тракторной, вагоностроительной, судостроительной, авиационной и других отраслях промышленности широкое применение нашла листовая холодная штамповка.

Распространение штамповки повысило эффективность производства по сравнению с ковкой за счет увеличения производительности и за счет значительной экономии металла.

В 50-е годы XX в. в СССР были разработаны мощные гидравлические штамповочные прессы. На Уральском заводе изготовили 2 гидравлических пресса усилием 294 МН. Новокраматорский машиностроительный завод (НКМЗ) в 1960 г. выпустил уникальные штамповочные прессы 735 МН. Для их изготовления была применена принципиально новая технология соединения основных элементов пресса: станина и поперечины были собраны из катаных и кованых плит, соединенных электрошлаковой сваркой.

В 1976 г. НКМЗ изготовил для Франции пресс усилием 637 МН. В его конструкцию были внесены некоторые усовершенствования по сравнению с прессами 735 МН. Они обеспечили большую жесткость конструкции.

Кроме ковки, гидравлические прессы широко применяются для прессования металлов экструдированием. После создания в 1894 г. А. Диком экструзионного гидравлического пресса высокого давления процесс прессования получил распространение на предприятиях цветной металлургии. Прессование применялось для обработки пластичных металлов и сплавов – меди, латуни, алюминия и его сплавов, магния и его сплавов, медно-никелевых сплавов и других материалов.

В XX в. прессование является составной частью процессов обработки титана, бериллия, новых легких и специальных сплавов. Процесс прессования через матрицу оказался наиболее экономичным для получения профилей, прутков, проволоки и труб из цветных металлов. Он обеспечивает высокую точность параметров изделий.

В процессе развития прессового производства создавались новые виды прессов. Стали применяться вертикальные прессы. Хотя они более сложны в эксплуатации и уступают горизонтальным в мощности, у них есть свои преимущества: низкая стоимость, меньшая площадь, возможность изготовления труб с минимальной разностенностью и малого диаметра. Вертикальные прессы имеют большую производительность и меньшие отходы.

В последние десятилетия процесс прессования применяется для обработки труднодеформируемых материалов – сталей, титановых сплавов, вольфрама и молибдена.

Гидроэлектростанция

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния.

С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

Первой электростанцией трехфазного тока была Лаутенская гидроэлектростанция. На ней были установлены два одинаковых трехфазных синхронных генератора. Фазное напряжение при помощи трансформаторов повышалось с 50 до 5000 вольт. Ее электроэнергия использовалась для питания осветительной сети города Хейльбронна, а также ряда небольших заводов и мастерских. Понизительные трансформаторы устанавливались непосредственно у потребителей. Эта первая в мире промышленная установка трехфазного тока была запущена в эксплуатацию в начале 1892 г. Использование энергии вод в этой установке показало возможность использования гидроресурсов, отдаленных от промышленных центров. С тех пор число гидроэлектрических установок все время возрастает. Например, в 1892 г. H. Н. Бенардос предложил организовать электроснабжение Петербурга путем утилизации энергии Невы на специально построенных электрических станциях (мощностью до 20 000 л. с.). В 1893 г. Н. С. Лелявский разработал схему использования гидроэнергии Днепровских порогов. В. Н. Чиколев, пропагандировавший еще в начале 80-х годов XIX в. использование водяных турбин в качестве первичных двигателей электростанций, в 1896 г. совместно с Р. Э. Классоном построил в Петербурге на р. Охта гидроэлектростанцию и линию электропередач трехфазного тока.

В течение 90-х годов XIX в. гидроэнергия играет все более заметную роль в электроснабжении С каждым годом возрастало число крупных гидроэлектростанций.

В конце XIX в. были сооружены: Рейнфельдская гидроэлектростанция (Германия, 1898 г.) мощностью 16 800 кВт при напоре воды 3,2 м, Ниагарская (США) мощностью 50 тыс. л. с. при напоре 41,2 м, Жонажская (Франция, 1901 г.) мощностью 11 200 л. с. В начале второго десятилетия XX в. были пущены в ход гидроэлектростанции Аугст-Виллен (Германия, 1911 г.) мощностью 44 тыс. л. с., Кеокук (США, 1912 г.) мощностью 180 тыс. л. с. Качество турбинного оборудования было еще недостаточно высоким, КПД колебался в пределах 0,8–0,84. Несовершенными были формы и конструкции гидросооружений, что объясняется недостаточной изученностью вопросов инженерной гидравлики и гидротехники. Поэтому некоторые ГЭС, построенные в эти годы, в последующем подверглись более или менее серьезной реконструкции.

В дореволюционной России гидроэлектростанций было мало. Первой была установка на Охтинском заводе в Петербурге мощностью 350 л. с. (1896 г.). Кроме того, действовали ГЭС "Белый уголь" на р. Подкумок (1903 г.) мощностью 990 л. с., напряжением 8000 В, Гиндукушская ГЭС (1909 г.) на р. Мургаб, мощностью 1 590 л. с. Кроме того, действовали несколько более мелких по мощности (Сашнинская, Аллавердинская, Тургусунская, Сестрорецкая и др.). Общая мощность гидростанций дореволюционной России составляла 8000 кВт.

Рассмотрим основные виды ГЭС.

Деривационные ГЭС. В них существенная (а иногда и большая) часть напора создается посредством деривационных водоводов, являющихся искусственными сооружениями в виде открытых каналов, лотков, туннелей или трубопроводов. Водяные турбины ставятся на деривационном водоводе. Такие ГЭС подходят для горных рек.

Приплотинные ГЭС. Они устроены так, что напор в них создается посредством специально сооруженной плотины, которая, подпирая уровень воды, образует верхний бьеф. Здание ГЭС обычно располагается вблизи плотины: вода из водохранилища поступает к турбинам по напорным водопроводам, проходящим через тело плотины, либо под плотиной, либо непосредственно из верхнего бьефа. После использования вода из турбин отводится в русло. Для пропуска избытков воды устраиваются особые водосливные плотины. К этому типу ГЭС относятся ДнепроГЭС и Волжская имени В. И. Ленина.

На некоторые ГЭС в турбинных блоках сделали отверстия для холостых сбросов паводковых вод и подведения воды к турбинам. Эти ГЭС называются совмещенными. В гидроэлектростанциях встроенного типа агрегаты размещаются в теле бетонной плотины, так что необходимость сооружения особого машинного здания отпадает.

На современных средних и крупных гидроэлектростанциях, а также на многих мелких ГЭС широко применяются методы автоматики и телемеханики, причем на некоторых ГЭС полностью автоматизированы пуск, регулирование, управление и остановка агрегатов, а также управление затворами гидросооружений и напорных водотоков. Эти операции могут производиться телемеханически, т. е. диспетчерским персоналом пунктов управления. Многие ГЭС работают без персонала, управляются на расстоянии (например, с другой станции каскада либо с диспетчерского пункта). На отдельных автоматизированных ГЭС управление и поддержание нужного режима работы осуществляются при помощи автооператоров, выполняющих свои функции по заранее намеченным для них планам и графикам. На полностью автоматизированных ГЭС, управляемых дистанционно или посредством автооператоров, надзор за оборудованием осуществляется путем периодических инспекторских осмотров ГЭС. При какой-либо аварии подается сигнал дежурному для восстановления нормального режима работы ГЭС.

Достоинства и преимущества гидроэлектростанций по сравнению с тепловыми электростанциями весьма значительны и состоят прежде всего в том, что ГЭС экономят топливо, рационализируют топливный баланс, содействуют экономическому развитию районов, не обеспеченных достаточными топливными ресурсами. Конструкция агрегатов гидроэлектрических станций проще, чем агрегатов тепловых электрических станций, а процесс производства электрической энергии на гидростанциях значительно менее сложен, чем на тепловых станциях.

Работа гидроэлектростанции не связана с таким количеством отходов, как работа ТЭС. Строительство гидроэлектростанций приводит к рациональному решению не только энергетической проблемы, но и ряда иных проблем, имеющих большое значение. Среди них– проблемы судоходства, ирригации и мелиорации земель, водоснабжения, рыбного хозяйства и очень важная проблема преобразования природы.

Опыт эксплуатации первых гидроэлектростанций показал, что они имеют большую маневренность, хорошую надежность работы и малые эксплуатационные расходы, не требуют многочисленного обслуживающего персонала и допускают полную автоматизацию процесса производства электроэнергии с весьма широкими возможностями телеуправления. Современные гидравлические турбины обладают КПД, доходящим до 0,93. Энергия, производимая гидроэлектростанциями, дешевле, чем электроэнергия, доставляемая тепловыми электростанциями.

В техническом и эксплуатационном отношениях очень важно, что гидроэлектрические установки обладают большой маневренностью. Эта особенность гидроагрегатов имеет существенное значение для крупных энергетических систем, так как резкий прирост нагрузки, в том числе при аварийных сбоях в системе, можно быстро компенсировать включением резервных гидроагрегатов. Таким образом, гидроагрегаты оказались очень удобными для покрытия пиков нагрузки в системах, в которых работают как тепловые, так и гидравлические станции.

Недостатком гидравлических станций является их "локальность", т. е. возможность эффективного строительства гидростанций только в относительно немногих районах. Эта локальность преодолевается передачей энергии на расстояние электрическим током, однако в некоторых случаях транспорт энергии путем перевозки топлива экономически эффективнее, особенно при применении нефтепроводов и газопроводов. Первоначальные затраты на сооружение ГЭС выше, чем на тепловые электростанции.

Большим недостатком равнинных ГЭС является отчуждение земель, затопляемых водохранилищем. Постепенно происходит размывание берегов искусственных водоемов, их заиливание, нарушение экологического равновесия в зоне водохранилищ.

Назад Дальше