Группа крови является индивидуальной для каждого человека совокупностью специальных веществ, называющихся групповыми антигенами (это вещества, которые организм идентифицирует как чужеродные и с которыми начинает "бороться").
Группа крови не изменяется на протяжении всей жизни человека. В зависимости от комбинации антигенов кровь классифицируют на четыре группы. Группа крови определяется вне зависимости от расы, половой принадлежности, возраста.
В XIX в. при исследовании крови на эритроцитах были обнаружены вещества белковой природы, у разных людей они были различны и обозначены как A и B. Такие вещества (антигены) являются вариантами одного гена и отвечают за группы крови. После этих исследований люди были разделены по следующим группам крови:
О(I) – первая группа крови;
А(II) – вторая группа крови;
В(III) – третья группа крови;
АВ(IV) – четвертая группа крови.
Помимо этого, кровь может быть резус-положительной либо резус-отрицательной.
Выявление групп крови является важным открытием, поскольку позволило переливать совместимую кровь от человека человеку. Перед процедурой переливания следует установить группу крови. Также проводится проба на совместимость групп крови.
Определение резус-принадлежности
Компоненты крови должны переливаться только той группы системы АВО и той резус-принадлежности, которая имеется у реципиента.
По жизненным показаниям и при отсутствии одногруппных по системе АВО компонентов крови (за исключением детей) допускается переливание резус-отрицательных переносчиков газов крови О(I) группы реципиенту с любой другой группой крови до 500 мл. Резус-отрицательная эритроцитная масса или взвесь от доноров группы А(II) или В(III) по витальным показаниям могут быть перелиты реципиенту с АВ(IV) группой, независимо от его резус-принадлежности. При отсутствии одногруппной плазмы реципиенту может быть перелита плазма группы АВ(IV).
Во всех без исключения случаях переливания эритроцитсодержащих компонентов крови абсолютно обязательным является проведение до начала переливания проб на индивидуальную совместимость и в начале трансфузии – биологической пробы.
Плазминоген
Норма – 80-120 %.
Плазминоген является неактивной формой плазмина. Исследование плазминогена проводят для оценки плазминовой (фибринолитической) системы. Плазминовая система состоит из четырех компонентов: плазмина, плазминогена, ингибиторов и активаторов проферментов фибринолитической системы.
Плазминовая система в основном необходима, чтобы разрушать фибрин.
Под воздействием различных неблагоприятных факторов снижается функция плазминовой системы и выработка ее составных компонентов. В случае повышения активности этой системы нарушается процесс гемостаза и происходит развитие геморрагического синдрома. Этот синдром протекает с кровотечениями. При скрытой форме кровоточивость наблюдается у пациентов в послеродовом и послеоперационном периоде.
Часто регистрируется вторичный фибринолиз в результате повышения активности плазминовой системы в ответ на выработку фибрина. Сначала активность плазмина повышена, а затем снижена за счет израсходования плазминогена.
Плазминоген относится к белкам острой фазы, поэтому его уровень высок при травмах, инфекциях, опухолях, в последний триместр беременности.
Глава 2. Биохимические исследования крови
Общий белок в сыворотке крови
Уровень общего белка в сыворотке крови составляет в норме 65–85 г/л.
Содержание общего белка зависит от образования и распада двух фракций белка – глобулинов и альбуминов.
Белки сохраняют объем крови, так как связывают и задерживают воду в кровяном русле; участвуют в свертывании, иммунных процессах, поддерживают кислотность; нормализуют уровень некоторых катионов в сыворотке – железа, меди, кальция, магния, образуя с ними нерастворимые соединения; входят в состав ферментов, гормонов и других биологически активных веществ.
Белки плазмы крови вырабатываются в основном клетками печени.
Гиперпротеинемия (повышенный уровень белка) наблюдается при тяжелых травмах, ожогах, холере, острых инфекциях, хронических инфекциях, вследствие повышенной выработки иммуноглобулинов при плазмоцитоме.
Физическая нагрузка с переменой положения тела из горизонтального в вертикальное увеличивает уровень белка на 10 %.
Гипопротеинемия (снижение концентрации белка крови) наблюдается при недостаточном приеме белков – голодании, безбелковой диете; повышенном выделении белка (заболевания почек, кровопотери, ожоги, сахарный диабет, асцит, опухоли); нарушении синтеза белка (гепатит, цирроз печени, токсические повреждения печеночных клеток, длительный прием глюкокортикостероидов, нарушение всасывания белковых молекул в кишечнике).
Исследование общего белка сыворотки крови используют для оценки нарушения белкового обмена и назначения соответствующей терапии.
Белки – это высокомолекулярные азотсодержащие органические соединения, состоящие из более чем 20 видов аминокислот. Простые белки состоят только из аминокислот, сложные белки (липопротеиды, гликопротеиды, нуклеопротеиды, хромопротеиды и др.), помимо аминокислот, в своем составе имеют другие небелковые компоненты: липиды, углеводы, нуклеиновые основания, хромогены и другие вещества.
Белки участвуют в осуществлении следующих функций:
1) структурной (являются строительным материалом клеток, органелл);
2) транспортной (образуют транспортные формы белков: липопротеиды, гемоглобин, альбумин);
3) сократительной (белки актин и миозин обеспечивают процессы мышечного сокращения);
4) каталитической (многие белки – ферменты);
5) регуляторной (многие гормоны имеют белковую природу);
6) защитной (функция осуществляется благодаря иммуноглобулинам, интерферонам; белкам системы свертывания крови и фибринолиза);
7) энергетической (утилизация аминокислот обеспечивает до 18 % потребляемой энергии).
Метаболизм белков является чрезвычайно сложным процессом, обеспечивающим у взрослого здорового человека динамическое равновесие между синтезом белков (анаболизмом), протекающим с потреблением энергии, и распадом белков (катаболизмом), сопровождающимся образованием энергии.
Интенсивность процессов биосинтеза белка в тканях и органах, необходимых для нормальной жизнедеятельности организма, определяется действием нескольких факторов:
1) необходимо достаточное поступление в организм пищевого белка (не менее 100 г/сут), содержащего необходимое количество незаменимых аминокислот;
2) необходимо полноценное переваривание белков в органах желудочно-кишечного тракта, для этого в достаточном количестве требуются ферменты желудка (пепсин, гастриксин), поджелудочной железы (трипсин, химотрипсин, карбоксипептидаза А и В, эластаза) и тонкого кишечника (энтеропептидаза);
3) необходимо полноценное всасывание продуктов гидролиза белков (аминокислот) в тонком кишечнике, что предъявляет серьезные требования к состоянию слизистой оболочки тонкой кишки, ее моторной активности и наличию специфических транспортных белков для переноса аминокислот;
4) требуются достаточное энергетическое обеспечение (АТФ, ГТФ) процессов биосинтеза белков во всех тканях и органах (прежде всего – в печени) и его полноценная регуляция анаболическими гормонами (половыми гормонами, инсулином, СТГ гипофиза) и витаминами (C, B6 и др.).
Расстройство функции любого из упомянутых факторов способно привести к нарушениям в механизмах биосинтеза белков, к угнетению этого процесса в организме и формированию белковой недостаточности.
Содержание общего белка в плазме крови взрослого здорового человека составляет 60–80 г/л. Суточная потребность в белке у человека зависит от возраста, массы тела, состояния здоровья. Уменьшение количества белка (гипопротеинемия) может быть абсолютным и относительным. Причинами абсолютной гипопротеинемии могут послужить:
1) недостаточное поступление белка в организм с пищей;
2) недостаток незаменимых аминокислот (таких как лизин, валин, метионин, фенилаланин, треонин, трептофан, лейцин, изолейцин), которые не могут синтезироваться в организме и не должны поступать с белковой пищей;
3) патологические состояния желудочно-кишечного тракта, в результате которых нарушаются поступление пищи в различные отделы ЖКТ и ее всасывание (злокачественные новообразования, стенозы, стриктуры);
4) повышенный распад белка в результате ожогов, сепсиса, тиреотоксикоза, злокачественных новообразований;
5) нарушение белковообразующей функции печени в результате поражения ее ткани различными факторами;
6) повышенные потери белка в результате деструктивных процессов (с экссудатом), выхода белка за пределы сосудистого русла (отеки);
7) заболевания почек, сопровождающиеся массивной протеинурией.
Относительная гипопротеинемия возникает при:
1) увеличении объема циркулирующей крови при массивной инфузионной терапии;
2) лактации;
3) беременности.
Повышение количества общего белка (гиперпротеинемия) встречается при:
1) дегидратации на фоне сгущения крови;
2) появлении в крови патологических белков (парапротеинемии).
Методом электрофореза белки разделяются на ряд фракций.
Альбумины
Это высокогидрофильные белки плазмы крови, на долю которых приходится около 60–70 % от количества общего белка (в норме альбуминов – 36–55 г/л). Альбумины обеспечивают связывание и транспорт жирных кислот, билирубина, стероидных гормонов, токсинов; поддерживают коллоидно-осмотическое давление плазмы крови. Снижение уровня альбуминов наблюдается при заболеваниях печени (в результате которых нарушается синтез альбуминов), при гнойно-воспалительных процессах с массивной экссудацией, при заболеваниях почек, злокачественных новообразованиях, тиреотоксикозе на фоне кровопотери, беременности. Гиперальбуминемия носит относительный характер и наблюдается при дегидратации организма.
Аммиак
В норме количество аммиака крови составляет 12–65 мкмоль/л. Аммиак является продуктом конечного метаболизма аминокислот, дезаминирования аминов, распада пуриновых и пиримидиновых оснований. Увеличение содержания аммиака (гипераммониемия) встречается при нарушении дезинтоксикационной функции печени.
Билирубин общий и прямой
Билирубин является одним из желчных пигментов. В благоприятных условиях представляет кристаллы, окрашенные в коричневый цвет, является промежуточным продуктом распада гемоглобина (белка эритроцитов). Билирубин в незначительных количествах содержится в плазме крови.
В норме уровень общего билирубина в сыворотке крови составляет менее 0,2–1 мг% или ниже 3,4-17,1 мкмоль/л.
Для определения концентрации билирубина используют метод Гендрамика.
Состояние, при котором концентрация билирубина выше 17,1 мкмоль/л, называется гипербилирубинемией. Билирубин скапливается в кровяном русле, и после достижения определенного уровня он переходит в ткани, за счет этого приобретающие желтую окраску, т. е. развивается желтуха.
Причины гипербилирубинемии:
1) повышенное разрушение эритроцитов (гемолитическая желтуха);
2) поражение печеночных клеток с нарушением выделения билирубина (паренхиматозная желтуха);
3) нарушенный отток желчи в кишечник (механическая желтуха);
4) нарушение образования фермента, отвечающего за выработку глюкоронидов билирубина;
5) нарушение прямого билирубина в желчи. Исследование уровня билирубина в практике используют
для определения вида желтухи, оценки степени повышения билирубина, для выявления повышенного уровня билирубина, когда желтуха вызывает сомнения (желтушность появляется при концентрации билирубина выше 30–35 мкмоль/л).
Гипобилирубинемия (низкий уровень билирубина в крови) возможна при постгеморрагических анемиях, алиментарном истощении. Но это особого диагностического значения в практике не имеет. Самые частые постгеморрагические анемии – анемии после кровотечения в просвет желудочно-кишечного тракта. При них кровь, попавшая в просвет, распадается, а образовавшийся билирубин всасывается, вызывая желтуху.
Уровень прямого билирубина в сыворотке. В норме концентрация прямого билирубина составляет 0–0,2 мг/дл или 0–3,4 мкмоль/л.
Данное исследование имеет значение при дифференциальной диагностике вариантов желтух.
При паренхиматозной желтухе печеночные клетки разрушаются, выход прямого билирубина в желчные ходы нарушается, и он попадает в кровяное русло, что вызывает гипербилирубинемию. Печеночные клетки недостаточно образуют билирубин-глюкорониды, в результате чего уровень непрямого билирубина также возрастает.
При механической желтухе из-за нарушенного оттока желчи резко возрастает концентрация прямого билирубина в крови. Немного повышен и уровень непрямого билирубина.
При гемолитической желтухе концентрация прямого билирубина не меняется.
Концентрация непрямого билирубина в крови в норме – 0,2–0,8 мг/дл или 3,4-13,7 мкмоль/л. Определение непрямого билирубина необходимо для диагностики анемии гемолитического происхождения.
Уровень непрямого билирубина возрастает при пернициозной анемии, гемолитической анемии, желтухе новорожденных, синдроме Ротора, Жильбера.
Гаптоглобин сыворотки
Гаптоглобин (Нр) – это белок плазмы, который связывает гемоглобин, выходящий из эритроцитов при их (эритроцитов) разрушении, его уровень колеблется в широких границах. Существует три вида гаптоглобина: Нр1–1, Нр2–1, Нр2–2, отличающиеся друг от друга молекулярным весом и передающиеся по наследству.
Нормальные величины гаптоглобина в сыворотке крови: у новорожденных – 50-480 мг/л; у детей от 6 месяцев до 16 лет – 250-1380 мг/л; с 16 до 60 лет – 150-2000 мг/л; более 60 лет – 350-1750 мг/л.
Гаптоглобин отвечает за сохранность железа в организме человека, также он является белком острой фазы.
Уровень гаптоглобина может повышаться при воспалительных процессах (травмах, инфекциях, оперативных вмешательствах), холестазе, терапии кортикостероидами, опухолях различной локализации (рак желудочно-кишечного тракта, легких, молочной железы).
Концентрация гаптоглобина снижена при гемолизе эритроцитов: аутоиммунном гемолизе (переливание несовместимой крови), механическом (травмы, бактериальный эндокардит, искусственные клапаны сердца); хронических и острых поражениях печени; увеличении селезенки (спленомегалия). В случае развития нефротического синдрома концентрация белка плазмы зависит от гемоглобина А.
Если молекулярная масса Нр1–1 гаптоглобина понижается, то он (белок) выводится из организма с мочой. Если наблюдаются другие виды гаптоглобина, молекулярная масса которых выше, то белок из организма выводиться не будет.
Глюкоза
Это основной источник энергии в организме человека. Глюкоза поступает в организм человека с пищей или может образовываться в результате процессов гликогенолиза (распада гликогена), глюконеогенеза (синтеза глюкозы из неуглеводных продуктов). Нормальная концентрация глюкозы в плазме крови:
1) новорожденные дети – 2,22-3,33 ммоль/л;
2) дети до 14 лет – 3,33-5,55 ммоль/л;
3) взрослые до 60 лет – 4,44-6,38 ммоль/л;
4) взрослые старше 60 лет – 4,61-6,10 ммоль/л.
Уровень глюкозы может колебаться в зависимости от многих причин: питания, физической активности, эмоциональных нагрузок. Причинами повышения уровня глюкозы в крови (гипергликемии) являются:
1) сахарный диабет I или II типа (в результате недостаточной продукции инсулина или повышенной толерантности тканей к инсулину);
2) заболевания гипофиза, сопровождающиеся повышенной продукцией соматотропного гормона и адренокортикотропного гормона (болезнь Иценко – Кушинга, акромегалия, опухоли гипофиза);
3) патология надпочечников, приводящая к усиленной продукции катехоламинов или глюкокортикостероидов (феохромоцитома и др.);
4) заболевания поджелудочной железы (острый и хронический панкреатит, опухоль поджелудочной железы);
5) тиреотоксикоз;
6) действие некоторых лекарственных препаратов (таких как кортикостероиды, тироксин, АКТГ, адреналин, эстрогены, индометацин, большие дозы никотиновой кислоты, тиазидные диуретики, этакриновая кислота, фуросемид и др.).
Понижение уровня глюкозы крови (гипогликемия) отмечается при:
1) передозировке инсулина или других сахароснижающих препаратов у больных сахарным диабетом;
2) синдроме Золлингера – Эллисона, при котором происходит нарушение всасывания витамина B12 из-за закисления содержимого тонкой кишки;
3) отравлениях мышьяком, хлороформом, спиртами, протекающих с угнетением функции печени, в том числе с нарушением процессов гликогенеза и глюконеогенеза;
4) при эндокринной патологии (болезни Аддисона, гипотиреозе, гипопитуитаризме и др.);
5) заболеваниях, сопровождающихся нарушением всасывания углеводов в кишечнике (энтеритах, последствиях гастрэктомии, панкреатической диарее и т. п.);
6) злокачественных новообразованиях различной локализации (раке надпочечников, раке желудка, первичном раке печени);
7) при длительном голодании.
При клинических признаках, приводящих к подозрению на сахарный диабет, проводят тест толерантности к глюкозе. Это высокоэффективный метод определения скрытых нарушений углеводного обмена, показаниями к его проведению являются:
1) наличие явных признаков сахарного диабета на фоне нормальной концентрации глюкозы в крови и моче при неоднократно проведенных исследованиях;
2) наличие отягощенной наследственности по сахарному диабету при отсутствии явной клинической картины;
3) постоянная или эпизодическая глюкозурия при нормальном уровне глюкозы в крови и без клинических признаков сахарного диабета.
4) глюкозурия на фоне заболеваний печени, беременности, тиреотоксикоза.
Тест толерантности к глюкозе основан на пероральном или внутривенном методе введения сахаров.
При внутривенном тесте толерантности к глюкозе исключаются факторы, связанные с недостаточностью расщепления и всасывания углеводов в тонком кишечнике, чего нельзя исключить при пероральном приеме глюкозы. В течение 3 дней до проведения теста пациент получает пищу, содержащую около 150 г углеводов в сутки. Исследование проводится натощак. Глюкозу в виде 25 %-ного раствора из расчета 0,5 г/кг массы тела вводят обследуемому внутривенно медленно в течение 1–2 мин., до введения определяют глюкозу крови. Затем содержание глюкозы в плазме крови определяют через 3, 5, 10, 20, 30, 45 и 60 мин. после внутривенного введения глюкозы и рассчитывают коэффициент ассимиляции глюкозы (К), который отражает скорость исчезновения глюкозы из крови после внутривенного введения. Для этого определяют время (t1/2), необходимое для снижения вдвое содержания глюкозы, определенного через 10 мин. после вливания. Коэффициент ассимиляции глюкозы рассчитывают по формуле:
К = 70 / t1/2,