Как лечить боли в спине и ревматические боли в суставах - Фирейдон Батмангхелидж 6 стр.


Чувствительные к боли нервные окончания

Все ткани тела снабжены нервными окончаниями, то есть иннервированы. Нервные окончания выполняют разные функции: регулируют движения, позу, регистрируют ощущения (тепло, прикосновение и боль). Все, наверное, слышали об адреналине и об адренэргической системе, а также об ацетилхолине и холин-эргической системе, присущих тканям как центральной, так и периферической нервной системы. Стоит вспомнить также серотонин-эргическую систему, главным фактором в которой является серотонин. Сейчас общепризнано, что ощущения боли оцениваются в мозгу именно благодаря этой системе. Наркотики, например морфий или героин, достигают эффекта, воздействуя именно на эту систему.

Серотонинэргическая система хорошо представлена во всех тканях тела: в коже, суставах, мышцах, стенках сосудов; она очень развита и в структуре самого головного мозга. Ее роль в регуляции физиологических процессов в организме и координации разнообразных функций различных его систем сейчас признана и оценена по достоинству.

Недавно была высказана гипотеза, что чувствительные к серотонину нервные окончания реагируют на изменения рН в активно работающих зонах, если в них поступает недостаточно крови, чтобы насытить клетки водой, то есть сориентировать различные функции клетки на поддержание гомеостаза. Эта же система отвечает и за реакцию на тепловые изменения.

Вещества, вызывающие боль

В число содержащихся в организме веществ входит фермент прекалликреин. Под воздействием местных изменений pH (кислотности среды) это вещество превращается в калликреин, который, в свою очередь, превращает кининогены в кинины. Попадая на нервные окончания, кинины способны вызывать боль. Существует гипотеза, согласно которой этот процесс является виновником боли, связанной с лактоцидозом мышечной ткани, например, в нетренированных мышцах ног после длительных физических упражнений или в поясничных позвонках.

Такая боль может возникнуть при удержании туловища в неизменном положении или когда отдельные группы мышц напрягаются выше предела их выносливости (например, при постоянных попытках мышц спины исправить неправильное положение верхней части тела, вызванное силой тяжести). Основная функция кининов заключается в расширении местных кровеносных сосудов и усилении кровотока. В то же время, вызывая боль, они способствуют снижению местной мышечной активности.

Естественным свойством любой живой ткани является постоянное стремление поддержать уровень pH в пределах безопасных границ (нейтральный показатель 7,4). Поскольку клеточные мембраны любых тканей не пропускают ионы, то для решения проблемы регулирования уровня pH природа создала так называемые ионные насосы. Каждая клетка, в зависимости от ее функциональных потребностей, может иметь в своем распоряжении до нескольких тысяч таких насосов.

Функцию насосов выполняют сложные белки, каждый из которых обладает особой привлекательностью для строго определенных пар ионов. Недавно опубликованные результаты исследований показали, что один из типов таких насосов специализируется на обмене ионов водорода на ионы натрия.

Одна из важных характеристик этих насосов связана со способностью ионов накапливаться "на входе" в клетку и запускать стартовый механизм насоса. Это означает, что если в клетке повышается концентрация ионов водорода (кислоты), то насос начинает работать в форсированном режиме, то есть из клетки выводятся ионы водорода (кислотные), а их место занимают ионы натрия. Работа этих насосов должна быть сбалансирована; когда из клетки что-то выводится, место этого элемента должно занять другое вещество, и поэтому его необходимо ввести в клетку.

Существуют другие типы насосов, выполняющих точно такую же функцию, с тем отличием, что они занимаются выведением ионов натрия и внедрением в клетку ионов калия. Ионы кальция организм регулирует аналогичным образом. Эти насосы регулируют электролитный и ионный баланс в тканях организма, жизненно необходимый для осуществления всех функций внутри клеток, включая поддержание нормальной плотности костной структуры.

Свободная вода

Никакие активные функции в организме не могут осуществляться без расхода энергии (расщепления молекул аденозинтрифосфата, или ЛТФ). По всей видимости, преобразованием энергии для обеспечения работы ионных насосов занимается так называемая свободная вода.

Организм содержит воду в двух разных формах. Первая из них – это осмотически связанная, или инактивированная, вода (вода, взаимодействующая с каким-нибудь другим веществом), а вторая – это осмотически активная, или свободная, вода (вода, используемая для выполнения новых задач). Именно эта свободная вода становится поставщиком энергии для катионных или ионных насосов.

В организме свободная вода играет такую же важную роль, как стабильный денежный поток в процессе создания бизнеса – то есть она "раскручивает колеса". При увеличении количества доступной свободной воды клеточные насосы поддерживают ионное равновесие гораздо более эффективно.

Очевидно, что ощущение жажды никак нельзя считать надежным тонким регулятором содержания воды в организме, и с возрастом этот регулятор становится все менее надежным. Организм без заметного вреда для себя может довольно долго находиться в состоянии хронического обезвоживания, не реагируя на недостаток воды. В ситуации острого недостатка свободной воды в организме катионные насосы не могут эффективно выполнять свои функции.

В ткани, которая использует больше свободной воды, чем получает, начинается накопление ионов водорода, способное вызвать боль. Такая боль свидетельствует о дефиците свободной воды и, следовательно, является формой тканевой жажды.

С болью этого типа нужно бороться путем увеличения регулярного приема воды – в количестве не меньше полутора литров в день, даже когда человек не испытывает жажды. Выполнение этой рекомендации является абсолютной необходимостью, поскольку у людей старшего возраста эти относительно "сухие" клетки, как правило, теряют свои функции. Именно это постепенное изменение соотношения количества свободной воды внутри клеток к количеству воды вне клеток инициирует процессы старения и потери функций, которые приводят к смерти. У двадцатилетнего человека соотношение межклеточной и внутриклеточной воды составляет примерно 0,8–0,9, а в 70 лет оно возрастает до 1,1. Могу вас заверить, что такие значительные изменения не совместимы с эффективным функционированием клеток в пораженных "засухой" участках организма. Все это можно считать результатом того, что жажда, которую мы испытываем, недостаточно сильна, чтобы заставить нас оптимально насыщать водой все клетки организма в течение всей жизни.

Больше всего страдают в этой ситуации позвоночные диски, потому что у них нет системы кровообращения, которая могла бы поставлять питательные вещества и кислород. Поскольку клетки в структуре дисков являются живыми, то для поддержания функций им тоже необходимы питательные вещества.

Благодаря тому что под давлением веса тела чистая сывороточная жидкость выдавливается из ткани дисков, а под воздействием осмотических и вакуумных сил закачивается внутрь, в дисках происходит нечто напоминающее процесс кровообращения. Регулярный прием воды разжижает кровь и увеличивает осмотическую силу содержимого дисков, что в свою очередь способствует полному насыщению водой их ядер.

При повышенном содержании воды белки и ферменты организма функционируют более эффективно и обеспечивают нормальную жизнедеятельность и восстановление тканей.

Вывод. С болью в пояснице следует бороться путем увеличения ежедневного приема воды. Тип боли, возникающей в мягких тканях данной области, следует считать индикатором недостаточного снабжения жидкостью и питательными веществами, необходимыми для нормального функционирования ее анатомической структуры. Физические упражнения усиливают циркуляцию воды и доставку питательных веществ в эту область.

Отраженная боль и/или мышечная слабость, вызванная смещением межпозвонкового диска

Физическая структура человеческого организма уникальна. Если принять во внимание законы тяготения, вес тела, количество опорных элементов и постоянное изменение угла наклона туловища во время движения, то нельзя не признать, что мы являемся владельцами чрезвычайно сложной машины! Используя врожденное знание законов физики и химии, эта машина обеспечивает беспрепятственное осуществление наших намерений и желаний. Она позволяет человеку превращать твердые вещества, которыми он питается, в идеи и идеалы, что само по себе можно считать поразительным явлением. Но, в свою очередь, человек обязан заботиться об этой машине – в конце концов, она состоит из нежных, мягких и хрупких компонентов.

В перечень таких компонентов входят маленькие детали, которые удерживают вес тела, смягчают толчки, соединяют суставы и называются дисками. В теле человека насчитывается 24 позвонка и 23 мягких диска, расположенных между этими костными структурами.

Во все времена проблемы с дисками беспокоили здоровых людей чаще, чем любые другие недуги. Поражение дисков – это проблема всемирного масштаба, заставляющая пациентов обращаться к профессиональным врачам или к остеопатам, хиропрактикам и физиотерапевтам. Выбор предлагаемых решений обычно небогат: хирургическое вмешательство в тяжелых случаях либо мануальная терапия в более легких; иногда, в зависимости от тяжести состояния, приемлемым вариантом может оказаться постельный режим.

Любой из перечисленных курсов лечения не основан на точном понимании физиологии диска и не является логическим решением, согласующимся со сложными путями эволюции, в результате которых существование дисков стало жизненно необходимым для позвоночных животных. Особенно это касается позвоночных, которые изменили положение туловища и превратились из четвероногих в прямоходящих двуногих. Вертикальное анатомическое строение человеческого тела сделало диски главными опорными элементами позвоночного столба, в то время как у четвероногих дискам не приходится принимать на себя основную часть веса.

К счастью, в унаследованном нами характерном анатомическом строении позвоночника предусмотрены те же структурные механизмы обеспечения безопасности, которые есть у четвероногих. Знание этих анатомических особенностей должно помочь людям содержать межпозвонковые диски в должном состоянии и использовать их на полную мощность, без ненужных страданий и страха. Давайте посмотрим, как это сделать!

Позвоночный столб

Прежде чем углубляться в детали, следует остановиться на некоторых компонентах анатомического строения позвоночного столба и режиме их функционирования.

Семь верхних позвонков человека составляют так называемый шейный отдел, 12 позвонков относятся к грудному отделу, а остальные пять – к нижнему, или поясничному, отделу позвоночного столба. С анатомической точки зрения крестец, который соединяет две половинки таза, раньше тоже состоял из нескольких позвонков, которые срослись и образовали одно массивное и очень важное соединение между самым нижним поясничным позвонком и тазовым поясом. Анатомический рудимент "хвоста" представлен комплектом крошечных, напоминающих бусины косточек, прикрепленных к нижнему концу крестца; они называются копчиком. Эти крошечные "бусины" обеспечивают поддержку мягких тканей вокруг прямой кишки. Если вы посмотрите на рис. 1, то увидите пропорции различных отделов позвоночного столба.

Кроме того, ваше внимание привлекут еще два момента. Первый – это разница в изгибах разных отделов позвоночника, а второй – пропорциональное изменение размеров каждого позвонка, начиная от шеи вниз. Значение изгибов я объясню позже, а причина разницы в размерах позвонков связана с необходимостью адаптации к изменениях весовой нагрузки. Первый шейный позвонок поддерживает физический вес одной лишь головы, в то время как самому нижнему поясничному позвонку приходится поддерживать вес головы, шеи, груди и содержимого желудка – основной части веса тела.

Соответственно, если рассматривать позвоночник сверху вниз, то каждый последующий позвонок должен быть шире и толще, чтобы выдерживать возрастающий общий вес, который давит на диск и костную поверхность позвонка.

Мудрость природы

Однако это еще не все. Позвонкам необходимо справляться с нагрузками, намного превышающими фактический общий вес структуры, которую они поддерживают. Во время движения эти нагрузки возрастают в зависимости от типа движения. При беге сила давления веса возрастает в два с половиной – три раза в сравнении с первоначальной величиной. В соответствии с законами физики каждое действие включает в себя равнозначные и противоположно направленные моменты силы. Следовательно, когда вектор, или момент силы, направляется вниз по позвоночному столбу, то, как только он достигает стоп и передается на расположенную под ними землю, возникает эффект зеркального отражения и равнозначный вектор силы устремляется через расположенные вверху твердые структуры к голове. Только на сей раз этот вектор представляет собой общую сумму веса всего тела плюс коэффициент его движения. По-научному это явление называется "силой противодействия".

К счастью, мудрая природа позаботилась обо всем, она – идеальный инженер. В противном случае, если бы сила величиной в 70 кг устремилась вниз, возросла и вернулась вверх, то после нескольких шагов заключенная в черепе мозговая ткань превратилась бы в кашу. Природа решила эту проблему, создав на каждом уровне тела уравновешивающие разнонаправленные изгибы, которые рассеивают силы, проходящие через костные структуры. Это чудо инженерного искусства воплощено в конструкции такой сложной машины, как наше тело, – с помощью одних только крошечных клеток с таким поразительным запасом прочности и такой способностью к самовосстановлению, которые позволяют ему выдерживать столько лет нещадной эксплуатации!

А теперь давайте посмотрим, как природа решает проблемы, создаваемые весом тела во время движения.

Вес и движение

Каждому из нас хоть раз в жизни приходилось играть с мячом. Представьте, что мы выпускаем мяч из рук, позволяя ему свободно упасть. Он ударится о землю и отскочит вверх – на высоту, которая окажется несколько ниже исходной точки свободного падения. После нескольких отскоков мяч успокоится и останется на земле. В зависимости от твердости поверхности земли и давления внутри мяча часть энергии, возникающей в результате удара, будет поглощена землей и структурой мяча. Вот почему мяч никогда не поднимется на полную высоту.

С другой стороны, выпущенный из рук тяжелый камень поглотит всю силу удара и передаст часть этой силы земле. Хрупкий объект, такой как стакан, просто разобьется.

Человеческое тело не является исключением из числа объектов, подчиняющихся естественным законам природы, которые воздействуют на мяч, камень или стакан. Правда, в отличие от последних природа наделила человеческое тело несколькими приспособлениями, способными гасить энергию удара. К ним относятся ступни ног и их своды, бедра (благодаря рессорным свойствам структуры тазобедренных суставов и их особому расположению, а также способу крепления позвоночника к тазу), круглая форма тазовых костей, эластичные и амортизирующие свойства межпозвонковых дисков и, наконец, свойства "сжатой пружины", которыми обладают изгибы позвоночного столба (рис. 1). Давайте посмотрим, как это происходит.

Стопа и ее свод

Одной из самых важных функций стопы, помимо обеспечения контакта между землей и массой тела, связана с ее рессорными свойствами. На рис. 5 показаны точки соприкосновения между передней и задней частью стопы и землей. Соединение этих двух точек (и удержание стопы в изогнутом положении) обеспечивается похожей на толстую волокнистую ленту фиброзной связкой, которая играет роль поглощающей давление рессоры и усиливает эффект погашения воздействующей на землю силы веса тела и обратной силы, направленной вверх. Благодаря этому при контакте стопы находящегося в движении тела с землей сила веса и противодействующая ей сила, направленная от земли, становятся значительно слабее. Вот почему людям, страдающим плоскостопием, трудно ходить и бегать. Этим же объясняется настоятельная необходимость постоянно заботиться о сохранении свода стопы путем правильного подбора обуви.

Анатомия таза и распределение нагрузки

Каждый, кто когда-нибудь интересовался стрельбой по мишеням, наверняка понимает, почему материал, из которого изготовлен щит за мишенью, должен обладать особыми свойствами. Если позволить силе удара пули раз за разом воздействовать на одну и ту же точку, то очень скоро материал щита придет в негодность. Изобретательные люди занялись этой проблемой и придумали для пулеприемника специальную конструкцию из переплетенных спиралевидных структур, отклоняющих направление пули и заставляющих ее двигаться по спирали до тех пор, пока она не остановится. Сила удара пули о поверхность ослабляется настолько, что не вызывает разрушения материала.

Это решение основано на естественном физическом явлении: при воздействии вектора силы на объект круглой формы величина силы непрерывно уменьшается. Человеческое тело использует этот закон природы при любой возможности и в каждой точке, где необходимо изменить направление силы. Самым лучшим и самым успешным примером применения такого инженерного искусства можно считать конструкцию черепа.

Такое же решение используется в конструкции таза и межпозвонковых дисков, которым приходится постоянно иметь дело с продольным воздействием силы. На рис. 6 показана форма тазового пояса и приблизительный механизм распределения нагрузки и разделения момента силы на несколько мелких векторов. Одновременно с тем, как сила веса генерирует энергию, направленную вниз, отражение этой силы от земли создает вектор, направленный вверх по позвоночному столбу. В состоянии покоя величина этих сил минимальна, но во время прыжков, бега и ходьбы она значительно возрастает.

Самое большое значение такое распределение веса имеет для поясничного отдела позвоночника – области, которая выдерживает самые большие нагрузки и больше всего страдает (рис. 27). Вот почему каждому читателю необходимо разобраться в основах своей анатомии, оценить причину столь детального подхода к вопросу и осознать, насколько легко можно поддерживать нормальное функционирование этой области тела.

Человеческое тело сумело успешно провести собственную трансформацию, необходимую для перехода от передвижения на четырех конечностях к более практичному вертикальному положению тела.

Назад Дальше