* * *
Идея, что паттерны от различных чувств эквивалентны внутри вашего мозга, является совершенно неожиданной, и хотя она вполне понятна, она до сих пор не оценена по достоинству. Вот еще несколько примеров. Первый вы можете воспроизвести в домашних условиях. Все что вам необходимо - это напарник, устойчивая картонная ширма и муляж руки. Если вы производите этот эксперимент в первый раз, было бы идеальным, если бы у вас была резиновая рука, наподобие тех, что продаются на распродажах перед Хеллоуином, но также сработает, если вы просто обведете вашу руку на листе чистой бумаги. Положите вашу настоящую руку на поверхность стола в нескольких дюймах от фальшивой и выровняйте их одинаково (чтобы кончики пальцев были в одном направлении, ладони либо обе вверх, либо обе вниз). Затем поставьте ширму между двумя руками, так чтобы вы видели только фальшивую руку. Пока вы пристально глядите на фальшивую руку, работа вашего напарника - одновременно постукивать по обеим рукам в соответствующих точках. Например, ваш напарник мог бы постукивать по обоим мизинцам от сустава к ногтю с одной и той же скоростью, затем сделать три быстрых постукивания по второму суставу обоих указательных пальцев с одинаковыми промежутками, затем постукивать по окружности по тыльной стороне каждой руки и т. п. Через некоторое время области вашего мозга, где сходятся визуальные и соматосенсорные паттерны - одна из тех ассоциативных областей, о которых я упоминал ранее в этой главе - станут сбиты с толку. Вы действительно будете чувствовать прикосновения к фальшивой руке, как будто она ваша собственная.
Другой замечательный пример "эквивалентности паттернов" называется сенсорной подстановкой. Это может совершить революцию в жизни людей, потерявших зрение в детстве, и может когда-нибудь стать благом для людей, родившихся слепыми. Это также может породить новую технологию человеко-машинного интерфейса для остальных.
Понимая, что для мозга паттерны это все, Пол Бах-и-Рита, профессор биомедицинской инженерии из Университета Висконсина, разработал метод для отображения визуальных паттернов на поверхности языка. Надевая это отображающее устройство, слепые люди обучались "видеть" через ощущения на поверхности своего языка.
Вот как это работает. Человек надевает маленькую камеру на голову и чип на язык. Визуальные картинки транслируют пиксель за пикселем в точечные нажимы на языке. Визуальная сцена, которая может быть изображена как сотни пикселей на телевизионном экране, может быть превращена в паттерн из сотен точечных нажимов на поверхность языка. Мозг быстро обучается правильно интерпретировать эти паттерны.
Одним из первых, кто испробовал это устройство, является Эрик Вейхенмайер, атлет мирового класса, который ослеп в возрасте тринадцати лет, и который читает лекции о том, что слепые люди не должны сдаваться. В 2002 году Вейхенмайер взобрался на гору Эверест, став первым слепым человеком, не только достигнувшим, но и впервые предпринявшим такую цель.
В 2003 году Вейхенмайер испробовал наязычное приспособление и увидел изображение впервые со своего детства. Он смог разглядеть катящийся к нему по полу мяч, достать напиток со стола и сыграть в игру "Камень, Ножницы, Бумага". Позже он прогуливался по коридору, видел открывающиеся двери, изучил дверь и окно, и заметил, что на них есть значки. Изображения, первоначально воспринимаемые как прикосновения к языку, вскоре стали восприниматься как изображения в пространстве.
Эти примеры еще раз показывают, что кортекс черезвычайно гибкий, и что информация, поступающая в мозг, всего лишь паттерны. Не важно, откуда пришли паттерны; пока они коррелируют во времени определенным образом, мозг может воспринимать их как ощущения.
* * *
Все это не должно быть неожиданным, если мы примем точку зрения, что все, о чем знает мозг. Мозг это машина для паттернов. Я не говорю, что неправильно выражать функции мозга в терминах слуха, зрения, но на более фундаментальном уровне суть дела - паттерны. Не важно, насколько различной кажется активность разных областей кортекса, в них работает один и тот же базовый кортикальный алгоритм. Кортексу не важно, исходят ли паттерны от зрения, слуха или других чувств. Ему не важно, приходит информация от одного органа чувств или от четырех. Также ему было бы не важно, если бы вы воспринимали мир с помощью сонара, радара или магнитных полей, или если б у вас были щупальца вместо рук, или даже если б вы жили в четырех измерениях, а не в трех.
Это означает, что вам не нужен какой либо из ваших органов чувств или определенная комбинация чувств, чтоб быть интеллектуальным. У Хелен Келлер не было ни зрения, ни слуха, хотя она изучила язык и стала более опытным писателем, чем большинство видящих и слышащих людей. Это был очень интеллектуальный человек без двух основных чувств, невероятная гибкость мозга позволила ей воспринимать и понимать мир как и людям с пятью органами чувств.
Этот вид замечательной гибкости человеческого мозга дает мне надежду, что мы воссоздадим технологии, подсмотренные у мозга. Когда я думаю о построении интеллектуальных машин, я удивляюсь, зачем их привязывать к обычным органам чувств? Как только мы сможем расшифровать неокортикальный алгоритм и создать науку о паттернах, мы сможем применить его к любой системе, которую мы захотим сделать интеллектуальной. И одним из замечательных свойств схемы, подсмотренной в неокортексе, является то, что нам не нужно будет специально хитро программировать ее. Также, как слуховой кортекс стал визуальным кортексом у "перекоммутированого хорька", также, как визуальный кортекс находит альтернативное применение у слепых людей, точно также система, работающая на неокортикальном алгоритме, будет интеллектуальной независимо от того, какие типы паттернов мы выберем для нее. Нам все еще надо будет поломать голову над настройкой различных параметров системы, и нам необходимо будет натренировать и обучить ее. Но миллиарды нейронных деталей, дающих мозгу возможность быть сложным, создающим мысли, позаботятся сами о себе таким же естественным образом, как это происходит у наших детей.
В конечном счете, идея, что паттерны это фундаментальная валюта интеллекта, ведет к одному интересному философскому вопросу. Когда я сижу в комнате с моими друзьями, откуда я знаю, что они там или даже что они реальны? Мой мозг получает паттерны, которые согласуются с паттернами, которые я получил в прошлом. Эти паттерны соответствуют людям, которых я знаю, их лицам, их голосам, их обычному поведению, и всем видам фактов о них. Я научился ожидать, что эти паттерны возникают вместе определенным образом. Но когда вы переходите к ним, это всего лишь модель. Все наши знания о мире - это модель, основанная на паттернах. Уверены ли мы, что мир реален? Весело и необычно размышлять об этом. Некоторые фантастические книги и фильмы исследуют эту тему. Это не для того, чтоб сказать, что люди или объекты не реальны. Они реальны. Но наша уверенность в существовании мира базируется на соответствии паттернов и том, как мы их интерпретируем. Нет такой вещи, как непосредственное восприятие. У нас нет сенсоров "человека". Вспомните, мозг находится в темной и тихой коробке, и не знает ни о чем, кроме распределенных во времени паттернов, поступающих по входным волокнам. Ваше восприятие мира создано из этих паттернов, больше ничего. Существование может быть объективным, но пространственно-временные паттерны, текущие по связкам аксонов в наших мозгах, это все, с чем мы должны работать.
Эта дискуссия освещает иногда поднимаемые вопросы отношений между галлюцинациями и реальностью. Если мы можем воспринимать галлюцинации прикосновений, исходящие от резиновой руки и мы можем "видеть" симуляцией прикосновений к поверхности языка, "обманываемся" ли мы точно также, когда ощущаем прикосновения к собственной руке или видим своими собственными глазами? Можем ли мы верить, что мир таков, как кажется? Да. Мир действительно существует в абсолютной форме, близкой к той, в кокой мы его воспринимаем. Однако, наш мозг не может знать напрямую об абсолютном мире.
Мозг знает о мире через множество чувств, которые детектируют только часть абсолютного мира. Чувства создают паттерны, которые посылаются в кортекс и обрабатываются одними и теми же кортикальными алгоритмами для создания модели мира. Таким способом устная и письменная речь воспринимаются удивительно похоже, несмотря на то, что они совершенно различны на сенсорном уровне. Так же, модель мира Хелен Келлер близка к вашей и моей, несмотря на то, что у нее сильно сокращенный набор чувств. Через эти паттерны мозг создает модель мира, которая близка к реальным вещам, и затем, удивительно, держит ее в памяти. Память - вот что происходит с паттернами после того, как они попадают в кортекс - что мы и обсудим в следующей главе.
4. Память
Когда вы читаете эту книгу, идете по переполненной улице, слушаете симфонию, успокаиваете плачущего ребенка, ваш мозг набит пространственными и временными паттернами от всех ваших органов чувств. Мир это океан постоянно меняющихся паттернов, которые приходят, захватывая и врезаясь в ваш мозг. Почему вы ощущаете этот натиск? Паттерны приходят, проходят через различные структуры старого мозга, и, в конечном счете, попадают в неокортекс. Но что происходит с ними, когда они попадают в кортекс?
С времен начала индустриальной революции люди рассматривали мозг как некоторый тип машины. Они знали, что в голове нет шестерней и зубьев, но это было лучшей метафорой, которая у них была. Каким-то образом информация приходит в мозг и мозг-машина определяет, как должно реагировать тело. В компьютерную эру мозг стал рассматриваться как особый тип машины, программируемый компьютер. И как мы увидели в главе 1, исследователи ИИ уткнулись в эту точку зрения, аргументируя отсутствие прогресса тем, что компьютеры слишком слабы и медленны по сравнению с человеческим мозгом. Они говорят, что современный компьютер может быть эквивалентен только мозгу таракана, но когда мы сделаем компьютеры мощнее и быстрее, они станут такими же интеллектуальными, как люди.
С этой аналогией мозг - компьютер существует повсеместно игнорируемая проблема. Нейроны гораздо медленнее транзисторов в компьютере. Нейрон собирает информацию со своих синапсов и комбинирует эту информацию, чтоб решить, когда сгенерировать спайк для других нейронов. Обычный нейрон может сделать это и сбросить себя миллисекунд на пять, то есть примерно 200 раз в секунду. Это может показаться быстрым, но современные кремниевые компьютеры могут выполнять миллиард операций в секунду. Это означает, что базовая компьютерная операция в пять миллионов раз быстрее базовой операции вашего мозга. Это очень, очень большая разница. Так как же может быть, что мозг быстрее и мощнее, чем самые быстродействующие современные компьютеры? "Без проблем", говорят люди, поддерживающие аналогию "мозг это компьютер". "Мозг это параллельный компьютер. В нем миллиарды клеток, работающих одновременно. Этот параллелизм значительно увеличивает вычислительную мощь биологического мозга".
Я всегда чувствовал, что такой аргумент был хитростью, и простой мысленный эксперимент показывает почему. Это называется "правило в сто шагов". Человек может выполнять значительные задачи меньше чем за секунду. Например, я мог бы показать вам фотографию и попросить определить, изображена ли на ней кошка. Вашей задачей было бы нажать на кнопку, если там кошка, но не медведь или бородавочник или репа. Эта задача для компьютера сложная или невозможная на сегодняшний день, тогда как человек может решить ее достоверно за полсекунды или меньше. Но нейроны медленны, так что за полсекунды информация, поступающая в мозг, может пройтись только по цепочке длиной в сто нейронов. То есть, "компьютерное" решение подобной проблемы мозгом может быть в сто шагов или меньше, несмотря на то, сколько всего нейронов задействовано. С момента, когда свет попал в ваш глаз, до момента нажатия кнопки может быть задействована цепочка не длиннее ста нейронов. Цифровой компьютер, пытающийся решить ту же самую задачу, сделал бы миллиарды операций или шагов. Одной сотни компьютерных команд хватит только на то, чтоб переместить единичный символ на дисплей, не говоря о том, чтоб сделать что-то интересное.
Но если у меня есть миллионы нейронов, работающих совместно, не похоже ли это на параллельный компьютер? Конечно нет. И мозг и параллельный компьютер оперируют параллельно, но это все, что между ними общего. Параллельные компьютеры комбинируют множество скоростных компьютеров для работы над большой задачей, типа прогноза погоды на завтра. Чтоб предсказать погоду, вы должны вычислить физические условия во множестве точек планеты. Каждый компьютер может работать над отдельным местом в одно и то же время. Но даже если сотни или тысячи компьютеров будут работать параллельно, единичный компьютер все равно выполнит миллиарды или триллионы операций, прежде чем завершит задачу. Самый большой мыслимый параллельный компьютер не может сделать ничего полезного за сто шагов, не важно, насколько он большой или быстрый.
Вот аналогия. Предположим, я попрошу вас перенести одну сотню блоков через пустыню. Вы можете переносить только один камень одновременно, и пересечение пустыни потребует миллион шагов. Вы понимаете, что это займет у вас много времени, если действовать в одиночку, поэтому вы нанимаете сотню работников, которые будут работать параллельно. Теперь задача решается в сто раз быстрее, но она все также требует как минимум миллион шагов на пересечение пустыни. Наем еще большего количества рабочих - даже тысячи - не даст никакого выигрыша. Не важно, сколько рабочих вы наняли, задача не может быть решена за меньшее время, чем потребуется на миллион шагов. То же самое верно и для параллельных компьютеров. С некоторого момента, добавление новых компьютеров ничего не изменит. Компьютер, не важно, сколько в нем процессоров и как быстро они работают, не может "вычислить" ответ на сложную задачу за сотню операций.
Так как же мозг решает сложную задачу за сто шагов, которую параллельный компьютер даже теоретически не может решить за миллион или миллиард операций? Ответ в том, что мозг не "вычисляет" ответ на задачу; он достает ответ из памяти. По существу ответ был сохранен в памяти заранее. Всего несколько шагов требуется, чтоб достать что-то из памяти. Медленные нейроны не только достаточно быстры, чтоб сделать это, но они сами составляют эту память. Весь кортекс - это система памяти. Это совсем не компьютер.
* * *
Позвольте показать на примере различие между вычислением ответа на задачу и использование памяти для решения той же самой задачи. Рассмотрим задачу ловли мяча. Кто-то бросает мяч вам, вы видите, как он движется к вам, и менее чем за секунду вы хватаете его. Это кажется несложным - до тех пор, пока вы не попытаетесь запрограммировать манипулятор робота, чтоб сделать то же самое. Как убедились на своем опыте множество аспирантов, это кажется практически невозможным. Когда инженер или компьютерщик энергично берется за эту задачу, он в первую очередь пытается вычислить полет мяча, чтоб определить, где он будет, когда достигнет манипулятора. Это вычисление требует решения набора уравнений того типа, что изучались вами на физике в институте. Затем, все шарниры манипулятора должны дружно передвинуть манипулятор в необходимое положение. Это требует решение другого набора математических уравнений, более сложного, чем первые. Наконец, эта операция в целом должна быть повторена множество раз, чтобы по мере приближения мяча робот получил наилучшую информацию о положении и траектории мяча. Если робот будет ждать вычисления точного положения прибытия мяча, прежде чем начнет движение, он не успеет поймать его. Он должен начать движение, как только получит малейшую информацию о положении мяча, и постоянно корректировать свое положение по мере приближения мяча. Компьютеру требуются миллионы операций, чтоб решить множество математических уравнений для поимки мяча. И хотя компьютер мог бы быть запрограммирован для решения этой задачи, "правило ста шагов" говорит нам, что мозг решает ее другим способом. Он использует память.
Каким образом вы ловите мяч, используя память? Ваш мозг хранит информацию о мышечных командах, необходимых для поимки мяча (вместе с другими заученными движениями). Когда мяч брошен, происходят три веши. Во-первых, соответствующие воспоминания автоматически вызываются образом мяча. Во-вторых, фактически вспоминается временная последовательность мышечных команд. И в-третьих, полученная информация корректируется по мере ее вспоминания для того, чтоб приспособить к определенному моменту, такому как фактическая траектория мяча и положение вашего тела. Память о том, как поймать мяч, не запрограммирована в вашем мозгу; она запоминается за годы постоянной практики, и сохраняется без вычислений в ваших нейронах.
Вы могли бы подумать, "подождите, каждая попытка поймать мяч слегка отличается. Вы только что сказали, что каждое воспоминание постоянно корректируется, чтоб приспособить к различным вариациям мяча в каждом конкретном броске… Разве это не требует решения тех же самых уравнений, которых мы попытались избежать?". Так может показаться, но природа решила задачу вариации другим, очень простым путем. Как мы увидим позже в этой главе, кортекс создает то, что называется инвариантный образ, который автоматически оперирует с вариациями в мире. В качестве полезной аналогии можно вообразить, что происходит, когда вы садитесь на водяную кровать: подушки и другие люди на кровати внезапно смещаются в новое положение. Кровать не рассчитывает, как высоко должен быть поднят каждый объект; физические свойства воды и пластиковой оболочки матраца автоматически заботятся о корректировке. Как мы увидим в следующей главе, архитектура шестислойного кортекса, мягко говоря, делает нечто подобное с информацией, проходящей через него.