C++ для начинающих - Липпман 14 стр.


Однако в арифметических выражениях перечисление может быть автоматически преобразовано в тип int. Например:

const int array_size = 1024;

// правильно: pt2w преобразуется int

int chunk_size = array_size * pt2w;

3.9. Тип "массив"

Мы уже касались массивов в разделе 2.1. Массив – это набор элементов одного типа, доступ к которым производится по индексу – порядковому номеру элемента в массиве. Например:

int ival;

определяет ival как переменную типа int, а инструкция

int ia[ 10 ];

задает массив из десяти объектов типа int. К каждому из этих объектов, или элементов массива, можно обратиться с помощью операции взятия индекса:

ival = ia[ 2 ];

присваивает переменной ival значение элемента массива ia с индексом 2. Аналогично

ia[ 7 ] = ival;

присваивает элементу с индексом 7 значение ival.

Определение массива состоит из спецификатора типа, имени массива и размера. Размер задает количество элементов массива (не менее 1) и заключается в квадратные скобки. Размер массива нужно знать уже на этапе компиляции, а следовательно, он должен быть константным выражением, хотя не обязательно задается литералом. Вот примеры правильных и неправильных определений массивов:

extern int get_size();

// buf_size и max_files константы

const int buf_size = 512, max_files = 20;

int staff_size = 27;

// правильно: константа

char input_buffer[ buf_size ];

// правильно: константное выражение: 20 - 3

char *fileTable[ max_files-3 ];

// ошибка: не константа

double salaries[ staff_size ];

// ошибка: не константное выражение

int test_scores[ get_size() ];

Объекты buf_size и max_files являются константами, поэтому определения массивов input_buffer и fileTable правильны. А вот staff_size – переменная (хотя и инициализированная константой 27), значит, salaries[staff_size] недопустимо. (Компилятор не в состоянии найти значение переменной staff_size в момент определения массива salaries.)

Выражение max_files-3 может быть вычислено на этапе компиляции, следовательно, определение массива fileTable[max_files-3] синтаксически правильно.

Нумерация элементов начинается с 0, поэтому для массива из 10 элементов правильным диапазоном индексов является не 1 – 10, а 0 – 9. Вот пример перебора всех элементов массива:

int main()

{

const int array_size = 10;

int ia[ array_size ];

for ( int ix = 0; ix array_size; ++ ix )

ia[ ix ] = ix;

}

При определении массив можно явно инициализировать, перечислив значения его элементов в фигурных скобках, через запятую:

const int array_size = 3;

int ia[ array_size ] = { 0, 1, 2 };

Если мы явно указываем список значений, то можем не указывать размер массива: компилятор сам подсчитает количество элементов:

// массив размера 3

int ia[] = { 0, 1, 2 };

Когда явно указаны и размер, и список значений, возможны три варианта. При совпадении размера и количества значений все очевидно. Если список значений короче, чем заданный размер, оставшиеся элементы массива инициализируются нулями. Если же в списке больше значений, компилятор выводит сообщение об ошибке:

// ia == { 0, 1, 2, 0, 0 }

const int array_size = 5;

int ia[ array_size ] = { 0, 1, 2 };

Символьный массив может быть инициализирован не только списком символьных значений в фигурных скобках, но и строковым литералом. Однако между этими способами есть некоторая разница. Допустим,

const char cal[] = {'C', '+', '+' };

const char cal2[] = "C++";

Размерность массива ca1 равна 3, массива ca2 – 4 (в строковых литералах учитывается завершающий нулевой символ). Следующее определение вызовет ошибку компиляции:

// ошибка: строка "Daniel" состоит из 7 элементов

const char ch3[ 6 ] = "Daniel";

Массиву не может быть присвоено значение другого массива, недопустима и инициализация одного массива другим. Кроме того, не разрешается использовать массив ссылок. Вот примеры правильного и неправильного употребления массивов:

const int array_size = 3;

int ix, jx, kx;

// правильно: массив указателей типа int*

int *iar [] = { ix, jx, kx };

// error: массивы ссылок недопустимы

int iar[] = { ix, jx, kx };

int main()

{

int ia3{ array_size ]; // правильно

// ошибка: встроенные массивы нельзя копировать

ia3 = ia;

return 0;

}

Чтобы скопировать один массив в другой, придется проделать это для каждого элемента по отдельности:

const int array_size = 7;

int ia1[] = { 0, 1, 2, 3, 4, 5, 6 };

int main()

{

int ia3[ array_size ];

for ( int ix = 0; ix array_size; ++ix )

ia2[ ix ] = ia1[ ix ];

return 0;

}

В качестве индекса массива может выступать любое выражение, дающее результат целого типа. Например:

int someVal, get_index();

ia2[ get_index() ] = someVal;

Подчеркнем, что язык С++ не обеспечивает контроля индексов массива – ни на этапе компиляции, ни на этапе выполнения. Программист сам должен следить за тем, чтобы индекс не вышел за границы массива. Ошибки при работе с индексом достаточно распространены. К сожалению, не так уж трудно встретить примеры программ, которые компилируются и даже работают, но тем не менее содержат фатальные ошибки, рано или поздно приводящие к краху.

Упражнение 3.22

Какие из приведенных определений массивов содержат ошибки? Поясните.

(a) int ia[ buf_size ]; (d) int ia[ 2 * 7 - 14 ]

(b) int ia[ get_size() ]; (e) char st[ 11 ] = "fundamental";

(c) int ia[ 4 * 7 - 14 ];

Упражнение 3.23

Следующий фрагмент кода должен инициализировать каждый элемент массива значением индекса. Найдите допущенные ошибки:

int main() {

const int array_size = 10;

int ia[ array_size ];

for ( int ix = 1; ix = array_size; ++ix )

ia[ ia ] = ix;

// ...

}

3.9.1. Многомерные массивы

В С++ есть возможность использовать многомерные массивы, при объявлении которых необходимо указать правую границу каждого измерения в отдельных квадратных скобках. Вот определение двумерного массива:

int ia[ 4 ][ 3 ];

Первая величина (4) задает количество строк, вторая (3) – количество столбцов. Объект ia определен как массив из четырех строк по три элемента в каждой. Многомерные массивы тоже могут быть инициализированы:

int ia[ 4 ][ 3 ] = {

{ 0, 1, 2 },

{ 3, 4, 5 },

{ 6, 7, 8 },

{ 9, 10, 11 }

};

Внутренние фигурные скобки, разбивающие список значений на строки, необязательны и используются, как правило, для удобства чтения кода. Приведенная ниже инициализация в точности соответствует предыдущему примеру, хотя менее понятна:

int ia[4][3] = { 0,1,2,3,4,5,6,7,8,9,10,11 };

Следующее определение инициализирует только первые элементы каждой строки. Оставшиеся элементы будут равны нулю:

int ia[ 4 ][ 3 ] = { {0}, {3}, {6}, {9} };

Если же опустить внутренние фигурные скобки, результат окажется совершенно иным. Все три элемента первой строки и первый элемент второй получат указанное значение, а остальные будут неявно инициализированы 0.

int ia[ 4 ][ 3 ] = { 0, 3, 6, 9 };

При обращении к элементам многомерного массива необходимо использовать индексы для каждого измерения (они заключаются в квадратные скобки). Так выглядит инициализация двумерного массива с помощью вложенных циклов:

int main()

{

const int rowSize = 4;

const int colSize = 3;

int ia[ rowSize ][ colSize ];

for ( int = 0; i rowSize; ++i )

for ( int j = 0; j colSize; ++j )

ia[ i ][ j ] = i + j j;

}

Конструкция

ia[ 1, 2 ]

является допустимой с точки зрения синтаксиса С++, однако означает совсем не то, чего ждет неопытный программист. Это отнюдь не объявление двумерного массива 1 на 2. Агрегат в квадратных скобках – это список выражений через запятую, результатом которого будет последнее значение 2 (см. оператор "запятая" в разделе 4.2). Поэтому объявление ia[1,2] эквивалентно ia[2]. Это еще одна возможность допустить ошибку.

3.9.2. Взаимосвязь массивов и указателей

Если мы имеем определение массива:

int ia[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

то что означает простое указание его имени в программе?

ia;

Использование идентификатора массива в программе эквивалентно указанию адреса его первого элемента:

ia;

ia[0]

Аналогично обратиться к значению первого элемента массива можно двумя способами:

// оба выражения возвращают первый элемент

*ia;

ia[0];

Чтобы взять адрес второго элемента массива, мы должны написать:

ia[1];

Как мы уже упоминали раньше, выражение

ia+1;

также дает адрес второго элемента массива. Соответственно, его значение дают нам следующие два способа:

*(ia+1);

ia[1];

Отметим разницу в выражениях:

*ia+1

и

*(ia+1);

Операция разыменования имеет более высокий приоритет, чем операция сложения (о приоритетах операций говорится в разделе 4.13). Поэтому первое выражение сначала разыменовывает переменную ia и получает первый элемент массива, а затем прибавляет к нему 1. Второе же выражение доставляет значение второго элемента.

Проход по массиву можно осуществлять с помощью индекса, как мы делали это в предыдущем разделе, или с помощью указателей. Например:

#include iostream

int main()

{

int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

int *pbegin = ia;

int *pend = ia + 9;

while ( pbegin != pend ) {

cout *pbegin ;

++pbegin;

}

}

Указатель pbegin инициализируется адресом первого элемента массива. Каждый проход по циклу увеличивает этот указатель на 1, что означает смещение его на следующий элемент. Как понять, где остановиться? В нашем примере мы определили второй указатель pend и инициализировали его адресом, следующим за последним элементом массива ia. Как только значение pbegin станет равным pend, мы узнаем, что массив кончился. Перепишем эту программу так, чтобы начало и конец массива передавались параметрами в некую обобщенную функцию, которая умеет печатать массив любого размера:

#include iostream

void ia_print( int *pbegin, int *pend )

{

while ( pbegin != pend ) {

cout *pbegin ' ';

++pbegin;

}

}

int main()

{

int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

ia_print( ia, ia + 9 );

}

Наша функция стала более универсальной, однако, она умеет работать только с массивами типа int. Есть способ снять и это ограничение: преобразовать данную функцию в шаблон (шаблоны были вкратце представлены в разделе 2.5):

#include iostream

template c1ass e1emType

void print( elemType *pbegin, elemType *pend )

{

while ( pbegin != pend ) {

cout *pbegin ' ';

++pbegin;

}

}

Теперь мы можем вызывать нашу функцию print() для печати массивов любого типа:

int main()

{

int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

double da[4] = { 3.14, 6.28, 12.56, 25.12 };

string sa[3] = { "piglet", "eeyore", "pooh" };

print( ia, ia+9 );

print( da, da+4 );

print( sa, sa+3 );

}

Мы написали обобщенную функцию. Стандартная библиотека предоставляет набор обобщенных алгоритмов (мы уже упоминали об этом в разделе 3.4), реализованных подобным образом. Параметрами таких функций являются указатели на начало и конец массива, с которым они производят определенные действия. Вот, например, как выглядят вызовы обобщенного алгоритма сортировки:

#include a1gorithm

int main()

{

int ia[6] = { 107, 28, 3, 47, 104, 76 };

string sa[3] = { "piglet", "eeyore", "pooh" };

sort( ia, ia+6 );

sort( sa, sa+3 );

};

(Мы подробно остановимся на обобщенных алгоритмах в главе 12; в Приложении будут приведены примеры их использования.)

В стандартной библиотеке С++ содержится набор классов, которые инкапсулируют использование контейнеров и указателей. (Об этом говорилось в разделе 2.8.) В следующем разделе мы займемся стандартным контейнерным типом vector, являющимся объектно-ориентированной реализацией массива.

Назад Дальше