Ниже приводится пример программы, использующей класс String. Эта программа берет слова из входного потока и подсчитывает их общее число, а также количество слов "the" и "it" и регистрирует встретившиеся гласные.
#include iostream
#include "String.h"
int main() {
int aCnt = 0, eCnt = 0, iCnt = 0, oCnt = 0, uCnt = 0,
theCnt = 0, itCnt = 0, wdCnt = 0, notVowel = 0;
// Слова "The" и "It"
// будем проверять с помощью operator==( const char* )
String but, the( "the" ), it( "it" );
// operator( ostream, String )
while ( cin buf ) {
++wdCnt;
// operator( ostream, const String )
cout buf ' ';
if ( wdCnt % 12 == 0 )
cout endl;
// String::operator==( const String ) and
// String::operator==( const char* );
if ( buf == the | | buf == "The" )
++theCnt;
else
if ( buf == it || buf == "It" )
++itCnt;
// invokes String::s-ize()
for ( int ix =0; ix buf.sizeO; ++ix )
{
// invokes String:: operator [] (int)
switch( buf[ ix ] )
{
case 'a': case 'A': ++aCnt; break;
case 'e': case 'E': ++eCnt; break;
case 'i': case 'I': ++iCnt; break;
case 'o': case '0': ++oCnt; break;
case 'u': case 'U': ++uCnt; break;
default: ++notVowe1; break;
}
}
}
// operator( ostream, const String )
cout "\n\n"
"Слов: " wdCnt "\n\n"
"the/The: " theCnt '\n'
"it/It: " itCnt "\n\n"
"согласных: " notVowel "\n\n"
"a: " aCnt '\n'
"e: " eCnt '\n'
"i: " ICnt '\n'
"o: " oCnt '\n'
"u: " uCnt endl;
}
Протестируем программу: предложим ей абзац из детского рассказа, написанного одним из авторов этой книги (мы еще встретимся с этим рассказом в главе 6). Вот результат работы программы:
Alice Emma has long flowing red hair. Her Daddy says when the
wind blows through her hair, it looks almost alive, 1ike a fiery
bird in flight. A beautiful fiery bird, he tells her, magical but
untamed. "Daddy, shush, there is no such thing," she tells him, at
the same time wanting him to tell her more. Shyly, she asks,
"I mean, Daddy, is there?"
Слов: 65
the/The: 2
it/It: 1
согласных: 190
a: 22
e: 30
i: 24
о: 10
u: 7
Упражнение 3.26
В наших реализациях конструкторов и операций присваивания содержится много повторов. Попробуйте вынести повторяющийся код в отдельную закрытую функцию-член, как это было сделано в разделе 2.3. Убедитесь, что новый вариант работоспособен.
Упражнение 3.27
Модифицируйте тестовую программу так, чтобы она подсчитывала и согласные b, d, f, s, t.
Упражнение 3.28
Напишите функцию-член, подсчитывающую количество вхождений символа в строку String, используя следующее объявление:
class String {
public:
// ...
int count( char ch ) const;
// ...
};
Упражнение 3.29
Реализуйте оператор конкатенации строк (+) так, чтобы он конкатенировал две строки и возвращал результат в новом объекте String. Вот объявление функции:
class String {
public:
// ...
String operator+( const String rhs ) const;
// ...
};
2013-05-27 22:10:40 harvester
На каком вообще языке эти примеры?
2013-01-03 08:10:26 Tercius
const int ival = 1024; // правильно int *const piref = ival; Правильно будет const int*const piref=ival;
2012-07-01 17:26:10 FeelUs
const int ival = 1024; // правильно int *const piref = ival; - неправильно, т.к. piref мы можем разыменовать и изменить ival
2012-06-09 15:11:53 Павел
Как выполнить упражнение 3.25 с const? У меня только без него получается
2012-06-08 22:09:51 Павел
В разделе 3.2.2 некоторые имена написаны по 2-3 раза.
2012-05-28 13:02:12 Камолиддин
хорощая и удобная книга
4. Выражения
В главе 3 мы рассмотрели типы данных – как встроенные, так и предоставленные стандартной библиотекой. Здесь мы разберем предопределенные операции, такие, как сложение, вычитание, сравнение и т.п., рассмотрим их приоритеты. Скажем, результатом выражения 3+4*5 является 23, а не 35 потому, что операция умножения (*) имеет более высокий приоритет, чем операция сложения (+). Кроме того, мы обсудим вопросы преобразований типов данных – и явных, и неявных. Например, в выражении 3+0.7 целое значение 3 станет вещественным перед выполнением операции сложения.
4.1. Что такое выражение?
Выражение состоит из одного или более операндов, в простейшем случае – из одного литерала или объекта. Результатом такого выражения является r-значение его операнда. Например:
void mumble() {
3.14159;
"melancholia";
upperBound;
}
Результатом вычисления выражения 3.14159 станет 3.14159 типа double, выражения "melancholia" – адрес первого элемента строки типа const char*. Значение выражения upperBound – это значение объекта upperBound, а его типом будет тип самого объекта.
Более общим случаем выражения является один или более операндов и некоторая операция, применяемая к ним:
salary + raise
ivec[ size/2 ] * delta
first_name + " " + 1ast_name
Операции обозначаются соответствующими знаками. В первом примере сложение применяется к salary и raise. Во втором выражении size делится на 2. Частное используется как индекс для массива ivec. Получившийся в результате операции взятия индекса элемент массива умножается на delta. В третьем примере два строковых объекта конкатенируются между собой и со строковым литералом, создавая новый строковый объект.
Операции, применяемые к одному операнду, называются унарными (например, взятие адреса () и разыменование (*)), а применяемые к двум операндам – бинарными. Один и тот же символ может обозначать разные операции в зависимости от того, унарна она или бинарна. Так, в выражении
*ptr
* представляет собой унарную операцию разыменования. Значением этого выражения является значение объекта, адрес которого содержится в ptr. Если же написать:
var1 * var2
то звездочка будет обозначать бинарную операцию умножения.
Результатом вычисления выражения всегда, если не оговорено противное, является r-значение. Тип результата арифметического выражения определяется типами операндов. Если операнды имеют разные типы, производится преобразование типов в соответствии с предопределенным набором правил. (Мы детально рассмотрим эти правила в разделе 4.14.)
Выражение может являться составным, то есть объединять в себе несколько подвыражений. Вот, например, выражение, проверяющее на неравенство нулю указатель и объект, на который он указывает (если он на что-то указывает) :
ptr != 0 *ptr != 0
Выражение состоит из трех подвыражений: проверку указателя ptr, разыменования ptr и проверку результата разыменования. Если ptr определен как
int ival = 1024;
int *ptr = ival;
то результатом разыменования будет 1024 и оба сравнения дадут истину. Результатом всего выражения также будет истина (оператор обозначает логическое И).
Если посмотреть на этот пример внимательно, можно заметить, что порядок выполнения операций очень важен. Скажем, если бы операция разыменования ptr производилась до его сравнения с 0, в случае нулевого значения ptr это скорее всего вызвало бы крах программы. В случае операции И порядок действий строго определен: сначала оценивается левый операнд, и если его значение равно false, правый операнд не вычисляется вовсе. Порядок выполнения операций определяется их приоритетами, не всегда очевидными, что вызывает у начинающих программистов на С и С++ множество ошибок. Приоритеты будут приведены в разделе 4.13, а пока мы расскажем обо всех операциях, определенных в С++, начиная с наиболее привычных.
4.2. Арифметические операции
Таблица 4.1. Арифметические операции
Символ операции | Значение | Использование |
* | Умножение | expr*expr |
/ | Деление | expr / expr |
% | Остаток от деления | expr % expr |
+ | Сложение | expr + expr |
- | Вычитание | expr – expr |
Деление целых чисел дает в результате целое число. Дробная часть результата, если она есть, отбрасывается:
int ivall = 21 / 6;
int iva12 = 21 / 7;
И ival1, и ival2 в итоге получат значение 3.
Операция остаток (%), называемая также делением по модулю, возвращает остаток от деления первого операнда на второй, но применяется только к операндам целого типа (char, short, int, long). Результат положителен, если оба операнда положительны. Если же один или оба операнда отрицательны, результат зависит от реализации, то есть машинно-зависим. Вот примеры правильного и неправильного использования деления по модулю:
3.14 % 3; // ошибка: операнд типа double
21 % 6; // правильно: 3
21 % 7; // правильно: 0
21 % -5; // машинно-зависимо: -1 или 1
int iva1 = 1024;
double dval = 3.14159;
iva1 % 12; // правильно:
iva1 % dval; // ошибка: операнд типа double
Иногда результат вычисления арифметического выражения может быть неправильным либо не определенным. В этих случаях говорят об арифметических исключениях (хотя они не вызывают возбуждения исключения в программе). Арифметические исключения могут иметь чисто математическую природу (скажем, деление на 0) или происходить от представления чисел в компьютере – как переполнение (когда значение превышает величину, которая может быть выражена объектом данного типа). Например, тип char содержит 8 бит и способен хранить значения от 0 до 255 либо от -128 до 127 в зависимости от того, знаковый он или беззнаковый. В следующем примере попытка присвоить объекту типа char значение 256 вызывает переполнение:
#include iostream
int main() {
char byte_value = 32;
int ival = 8;
// переполнение памяти, отведенной под byte_value
byte_value = ival * byte_value;
cout "byte_value: " static_castint(byte_value) endl;
}
Для представления числа 256 необходимы 9 бит. Переменная byte_value получает некоторое неопределенное (машинно-зависимое) значение. Допустим, на нашей рабочей станции SGI мы получили 0. Первая попытка напечатать это значение с помощью:
cout "byte_va1ue: " byte_va1ue endl;
привела к результату:
byte_value:
После некоторого замешательства мы поняли, что значение 0 – это нулевой символ ASCII, который не имеет представления при печати. Чтобы напечатать не представление символа, а его значение, нам пришлось использовать весьма странно выглядящее выражение:
static_castint(byte_value)
которое называется явным приведением типа. Оно преобразует тип объекта или выражения в другой тип, явно заданный программистом. В нашем случае мы изменили byte_value на int. Теперь программа выдает более осмысленный результат:
byte_value: 0
На самом деле нужно было изменить не значение, соответствующее byte_value, а поведение операции вывода, которая действует по-разному для разных типов. Объекты типа char представляются ASCII-символами (а не кодами), в то время как для объектов типа int мы увидим содержащиеся в них значения. (Преобразования типов рассмотрены в разделе 4.14.)
Это небольшое отступление от темы – обсуждение проблем преобразования типов – вызвано обнаруженной нами погрешностью в работе нашей программы и в каком-то смысле напоминает реальный процесс программирования, когда аномальное поведение программы заставляет на время забыть о том, ради достижения какой, собственно, цели она пишется, и сосредоточиться на несущественных, казалось бы, деталях. Такая мелочь, как недостаточно продуманный выбор типа данных, приводящий к переполнению, может стать причиной трудно обнаруживаемой ошибки: из соображений эффективности проверка на переполнение не производится во время выполнения программы.
Стандартная библиотека С++ имеет заголовочный файл limits, содержащий различную информацию о встроенных типах данных, в том числе и диапазоны значений для каждого типа. Заголовочные файлы climits и cfloat также содержат эту информацию. (Об использовании этих заголовочных файлов для того, чтобы избежать переполнения и потери значимости, см. главы 4 и 6 [PLAUGER92]).
Арифметика вещественных чисел создает еще одну проблему, связанную с округлением. Вещественное число представляется фиксированным количеством разрядов (разным для разных типов – float, double и long double), и точность значения зависит от используемого типа данных. Но даже самый точный тип long double не может устранить ошибку округления. Вещественная величина в любом случае представляется с некоторой ограниченной точностью. (См. [SHAMPINE97] о проблемах округления вещественных чисел.)
Упражнение 4.1
В чем разница между приведенными выражениями с операцией деления?
double dvall = 10.0, dva12 = 3.0;
int ivall = 10, iva12 = 3;
dvall / dva12;
ivall / iva12;
Упражнение 4.2
Напишите выражение, определяющее, четным или нечетным является данное целое число.