Осадочные горные породы
Осадочные горные породы образовались в результате осаждения солей в высыхающих водоемах – органогенные (химические осадки, скопления остатков растительного и животного мира), а также в результате разрушения массивных горных пород магматического или осадочного происхождения – обломочные.
К химическим осадкамотносят гипс, ангидрит, магнезит, доломит и известковые туфы.
Гипс -горная порода, состоящая из минерала того же названия. Гипс применяют для производства воздушного вяжущего – строительного гипса, а также в качестве облицовочного материала внутренних частей зданий в виде искусственного мрамора.
Ангидритсостоит из одноименного минерала – ангидрита. Применяют его в качестве облицовочного материала, а также сырья для производства ангидритового цемента.
Магнезитсостоит из минерала того же названия – магнезита. Иногда он содержит примеси углекислых кальция и железа. Твердость магнезита 3,5–4,0, цвет белый, от желтоватого до бурого. Применяют магнезит в качестве сырья для производства воздушного вяжущего – каустического магнезита и огнеупорных материалов.
Доломитсостоит в основном из минерала доломита с примесями глинистого, железистого, кремнистого и других веществ. Цвет серый, от желтоватого до бурого, структура – зернистая. По свойствам доломиты близки к плотным известнякам, иногда они обладают и более высокими, чем известняки, механическими свойствами. Применяют доломиты Са(НС0 3) 2для производства щебня, изготовления облицовочных плит, огнеупоров и вяжущих материалов.
Известковые туфыобразовались при выделении СаС0 3из кислого уклекислого кальция, растворенного в воде. Очень пористые известковые туфы используют как сырье для получения извести, а плотные с мелкими равномерно расположенными порами туфы применяют в виде штучных камней для кладки стен и в качестве щебня для легких бетонов.
К органогенным породамотносят различные карбонатные и кремнистые породы. Для строительных целей используют известняки, известняки-ракушечники, мел, диатомиты и трепелы.
Известнякобразовался в водных бассейнах из остатков животного и растительного мира (или как продукт химических осадков). Рыхлые скопления раковин и их осколков скреплялись углекислым кальцием. Известняк состоит в основном из кальцита и примесей глины, доломита, кварца и др. Плотность известняка – 1700–2600 кг/м , прочность при сжатии – 10-100 МПа. Цвет белый, от желтоватого до бурого. Известняк используют для производства щебня, облицовочных плит и архитектурных деталей, а также для производства извести и портландцемента.
Известняк-ракушечник -пористая горная порода, состоящая из раковин и их обломков, сцементированных известковым веществом. Плотность – 900-2000 кг/м , предел прочности при сжатии – 0,4-15,0 МПа и более. Применяют этот минерал для изготовления стеновых камней и блоков, а также в качестве заполнителя для легких бетонов.
Мел -землистая горная порода, состоящая почти полностью из чистого карбоната кальция. В качестве примесей встречаются глинистые вещества и зерна кварца. Мел обладает высокой дисперсностью. Применяют его в качестве белого пигмента, для приготовления замазки, а также при производстве извести, портландцемента и стекла.
Диатомиты– слабо сцементированная, очень пористая кремнеземистая порода, состоящая от панцирей диатомовых водорослей и частично из скелетов животных организмов. Плотность 400-1000 кг/м , пористость – 60–70 %.
Трепелы -очень легкая глиноподобная порода, содержащая аморфный кремнезем в виде мельчайших шариков опала. Плотность – 500-1200 кг/м , пористость – 60–70 %, коэффициент теплопроводности – 0,17-0,23.
Применяют диатомиты и трепелы для изготовления теплоизоляционных материалов, легкого кирпича, а также в производстве гидравлических вяжущих в качестве активных минеральных добавок.
Механические отложения образовались в результате физического выветривания горных пород под влиянием воды и температуры. Продукты разрушения переносились ветром и водными потоками на различные расстояния и оседали. Так образовались глины, песок, щебень и гравий из массивных горных пород.
Химическое выветривание проявлялось в результате взаимодействия составных частей горных пород с различными веществами, находящимися в атмосфере. Так, полевой шпат (ортоклаз) под действием воды и углекислоты, находящейся в воздухе, разрушался, образуя минерал каолинит.
К физическому и химическому выветриванию (разрушению) горных пород часто присоединяется еще биохимическое выветривание, являющееся результатом жизнедеятельности животных и растительных организмов. В результате выветривания горных пород образуются дисперсные частицы, зерна и крупные обломки; некоторые из них цементируются глиной, кальцитом или кремнеземом, образуя цементированные горные породы. В зависимости от крупности зерен и цементации их различают следующие виды механических отложений осадочных горных пород.
Песок– рыхлая смесь зерен различных пород крупностью 0,16-5,0 мм. В зависимости от условий образования пески бывают горные, речные, морские, дюнные, барханные и др. Применяют их для приготовления бетонов и растворов.
Гравий -окатанной формы зерна крупностью 5-70 мм. Применяют в качестве заполнителя для бетонов.
Песчаники -горная порода, состоящая из зерен кварца, сцементированная глинистым, кремнеземистым или известковым веществом. Прочность песчаника зависит от вида цементирующего вещества, крупности и формы сцементированных зерен. Наиболее прочные кремнеземистые песчаники имеют предел прочности при сжатии 200 МПа и более. Используют песчаники в качестве щебня для бетона, облицовки опор мостов и зданий, для дорожных покрытий, так как они имеют высокие морозостойкость и прочность при истирании.
Конгломераты -горная порода, состоящая из сцементированных зерен гравия, а брекчии -из сцементированных зерен щебня. Конгломераты и брекчии используют в качестве щебня для бетонов, штучного камня и облицовочных плит.
Метаморфические (видоизмененные) горные породы
Метаморфические горные породы образовались из магматических и осадочных путем их преобразования под влиянием высокой температуры и давления. В строительстве применяют гнейсы, глинистые сланцы, мраморы, кварциты.
Гнейсыпо минералогическому составу являются аналогами гранита и имеют сланцевое строение. Используют гнейсы преимущественно в качестве облицовочных плит, в виде бутового камня для кладки фундаментов и стен неотапливаемых зданий, для тротуаров.
Глинистые сланцысостоят из уплотненных сланцевых глин. Цвет темно-серый, иногда черный. Глинистые сланцы раскалываются на тонкие плитки, обладают высокой атмосферостойкостью и долговечностью, что позволяет использовать их в качестве кровельного материала.
Мрамор -кристаллическая порода, образовавшаяся из известняков или доломитов. Кристаллы соединены без цементирующего вещества. Прочность мрамора достигает 300 МПа, твердость небольшая – 3,0–3,5. Он сравнительно легко пилится на плиты и хорошо полируется. Применяют мрамор для облицовки внутренних частей зданий, так как снаружи зданий полировка быстро утрачивается, что объясняется слабой химической стойкостью мрамора при воздействии на него атмосферы.
Кварциты– метаморфическая разновидность кремнистых песчаников с перекристаллизованными и сросшимися зернами кварца, так что цементирующее вещество неразличимо. Кварциты стойки против выветривания, их прочность достигает 400 МПа. Используют кварциты для облицовки зданий, опор мостов, а также как сырье для производства огнеупорных изделий.
Разработка и обработка природных каменных материалов
Горные породы, пригодные для изготовления каменных материалов, называют полезными ископаемыми. Породы, сопровождающие полезные ископаемые и не используемые для указанной цели, относят к пустой породе. Работы, связанные с добычей полезных ископаемых, называют горными работами. Выработанные пространства, образующиеся в процессе добычи полезного ископаемого, именуются выработками, разрабатываемые месторождения – карьерами.
Выбор способа добычи природных каменных материалов зависит от вида горной породы, глубины и условий ее залегания, твердости и других параметров. Рыхлые горные породы – песок, гравий, глину – добывают открытым способом с помощью различных машин, из которых наиболее распространенными являются одно– и многоковшовые экскаваторы, а также гидромеханическим способом. Сущность гидромеханизации заключается в том, что вода подводится к месту добычи грунта под давлением, создаваемым насосами, проходит через гидромонитор и, вылетая с большой скоростью из его насадки, производит размыв породы. Затем из смеси грунта с водой (пульпы) выделяется товарная продукция (песок или гравий). Песок и гравий в карьерах классифицируют по крупности зерен на несколько фракций.
Щебень получают дроблением горных пород, добываемых взрывным или другим способом.
Поскольку нерудные материалы, поступающие с карьеров, по крупности, зерновому составу, количеству примесей обычно непригодны для непосредственного использования в бетонах, необходима их переработка, включающая операции по дроблению, фракционированию, выработке мелких фракций, мойке, обогащению и складированию.
Дроблениюподвергаются зерна горной породы крупностью до 1200–1500 мм. Для сборного железобетона используется щебень крупностью 5-40 мм. Существующие конструкции дробильных установок не могут обеспечить измельчение кускового материала необходимых фракций при однократном прохождении, поэтому применяют двух– или трехступенчатые схемы дробления. Для дробления используют дробилки щековые, конусные, валковые и ударного действия (молотковые и роторные). Выбор схемы дробления и типа дробильного оборудования производят с учетом свойств исходного сырья и условий обеспечения максимального выхода качественного по размерам и форме заполнителя.
Эффективность работы дробильных агрегатов повышается при многоступенчатом дроблении с применением классификаторов, например виброгрохотов. Дробление нерудных материалов, как правило, производят в стационарных установках на заводе, однако в последнее время все большее применение находят передвижные дробильные установки.
Простейший вид классификации – грохочение; с его помощью производят разделение материала на фракции заданных размеров. На предприятиях нерудных строительных материалов широко применяют плоские вибрационные грохоты. Для получения чистых, свободных от примесей заполнителей окончательное грохочение совмещают с промывкой.
После дробления и грохочения в материале остаются загрязняющие примеси в виде глины, ила и др., ухудшающие качество заполнителя. Для промывкинерудных строительных материалов широко используют наклонные лопастные двухвальные корытные мойки, а также барабанные промывочные машины. Барабанные промывочные машины в зависимости от направления движения отработанной воды со шламом бывают прямоточные и противоточные. Более эффективны противоточные машины, они выдают чистый заполнитель различной степени крупности от мелкого до 350 мм. В последнее время получили распространение вибрационные промывочные машины как более эффективные, потребляющие относительно мало энергии и воды, и менее металлоемкие. Эффективен в работе также виброкаскадный промывочный грохот, который предназначен для промывки зерен крупностью до 100 мм с содержанием глины до 10 %.
Наряду с грохочением применяется более точная гидравлическая классификация.Из гравитационных наиболее совершенны вертикальные классификаторы с восходящей струей. Классификация осуществляется в две стадии. Сначала пульпа разделяется в обогатительной камере, где основная часть мелких фракций выносится в слив, а оседающие крупные зерна песка поступают в классификационную камеру, где происходит окончательное разделение гидросмеси. Частицы крупнее заданного размера оседают к разгрузочному устройству, а мелкие – восходящим потоком выносятся в слив. Центробежные классификаторы (гидроциклоны, центрифуги) используют для выделения и разделения из песка зерен крупностью 0,15-0,3 мм. Обезвоживаниенерудных материалов производят различными способами. Чаще применяют дренирование, широко используют для обезвоживания нерудных материалов сушку – естественную (в штабелях) или искусственную (в сушильных барабанах).
Операции по технологической переработке нерудных материалов одновременно способствуют их обогащениюи повышению качества, но существуют и специальные способы обогащения, рассчитанные на переработку особых видов сырья, например с высоким содержанием слабых пород, а также на получение специальных видов заполнителя, обогащение щебня в грануляторах, тяжелых средах и др.
Правильные условия складированиянерудных строительных материалов обеспечивают сохранность их высокого качества и уменьшают потери. По способу хранения склады различают: открытые – штабельные, штабельно-траншейные, штабельно-эстакадные; закрытые – полу бункерные, бункерные и силосные. Заполнители хранятся раздельно по видам, фракциям и сортам.
Массивные изверженные горные породы разрабатывают, как правило, взрывом. При отделении глыб слоистых, трещиноватых, столбчатых пород применяют механические средства (клинья, механические лопаты и др.). Мягкие породы (известковые туфы и др.) добывают путем распиловки массива камнерезной машиной на блоки определенных размеров и правильной геометрической формы. При разработке месторождений некоторых разновидностей гранитов, туфов, мраморов (в открытых выработках) на штучный камень, плиты, блоки и т. д. применяют также способ распиловки породы механическими пилами.
Методы защиты природных каменных материалов от разрушения
Разрушение каменных материалов может происходить под действием воды как растворителя. Особенно активно действует на карбонатные породы вода, содержащая углекислоту, сернистые и другие кислотные соединения. Каменные материалы разрушаются также при переменном действии воды и мороза. Если горная порода состоит из нескольких минералов, то разрушение ее может происходить от изменения температуры вследствие того, что коэффициент линейного расширения разных минералов не одинаков.
Горные породы разрушаются также от воздействия органических кислот. Частицы пыли неорганического и органического происхождения, являющиеся бытовыми или промышленными отходами города, оседают на поверхности и в порах камня; при смачивании их водой имеют место бактериологические процессы с зарождением микроорганизмов, которые разрушают камень за счет образования органических кислот. Скорость разрушения горной породы зависит также от ее качества и структуры, выражающихся в наличии микротрещин, микрослоистости и размокающих и растворимых веществ. Для защиты каменных материалов от разрушения необходимо прежде всего предотвратить проникновение воды и ее растворов в глубину материала, для этого применяют так называемое флюатирование. При обработке известняка флюатами (например, кремнефтористым магнием) образуются нерастворимые в воде соли, которые закрывают поры в камне и тем самым повышают его водонепроницаемость и атмосферостойкость.
От воздействия углекислоты и образования сульфатов облицовочные камни предохраняют путем пропитки их на глубину до 1 см горячим льняным маслом. Еще один способ предохранения от проникновения воды – покрытие поверхности камня слоем раствора воска в скипидаре, парафина в легком нефтяном дистилляте или каменноугольном дегте. Защищают каменные материалы от разрушения также конструктивными мерами, например путем образования хорошего стока воды с поверхности камня, придания камню гладкой поверхности и т. д.
Стеновые керамические материалы и изделия
Керамические материалы получают из глиняных масс путем формования и последующего обжига. При этом часто имеет место промежуточная технологическая операция – сушка свежесформованных изделий, называемых "сырцом".
По характеру строения черепка различают керамические материалы пористые (неспекшиеся) и плотные (спекшиеся). Пористые поглощают более 5 % воды (по массе), в среднем их водопоглощение составляет 8-20 % по массе. Пористую структуру имеют кирпич, блоки, камни, черепица, дренажные трубы и др.; плотную – плитки для полов, канализационные трубы, санитарно-технические изделия.
По назначению керамические материалы и изделия делят на следующие виды: стеновые – кирпич обыкновенный, кирпич и камни пустотелые и пористые, крупные блоки и панели из кирпича и камней; для перекрытия – пустотелые камни, балки и панели из пустотелых камней; для наружной облицовки – кирпич и камни керамические лицевые, ковровая керамика, плитки керамические фасадные; для внутренней облицовки и оборудования зданий – плиты и плитки для стен и полов, санитарно-технические изделия; кровельные – черепица; трубы – дренажные и канализационные.
Универсальность свойств, широкий ассортимент, высокая прочность и долговечность керамических изделий позволяют широко использовать их в самых разнообразных конструкциях зданий и сооружений: для стен, тепловых агрегатов, в качестве облицовочного материала для полов и стен, в виде труб для сетей канализации, для облицовки аппаратов химической промышленности, в качестве легких пористых заполнителей для сборных железобетонных изделий.
Сырьевые материалы
Сырьем для изготовления керамических материалов служат различные глинистые горные породы. Для улучшения технологических свойств глин, а также придания изделиям из них определенных и более высоких физико-механических свойств к глинам добавляют кварцевый песок, шамот (дробленую обожженную при температуре 1000–1400 °C огнеупорную или тугоплавкую глину), шлак, древесные опилки, угольную пыль.
Глиняные материалы образовались в результате выветривания изверженных полевошпатовых горных пород. Процесс выветривания горной породы заключается в механическом разрушении и химическом разложении. Механическое разрушение происходит в результате воздействия переменной температуры и воды. Химическое разложение происходит, например, при воздействии на полевой шпат воды и углекислоты, в результате чего образуется минерал каолинит.
Глинойназывают землистые минеральные массы или обломочные горные породы, способные с водой образовывать пластичное тесто, по высыхании сохраняющее приданную ему форму, а после обжига приобретающее твердость камня. Наиболее чистые глины состоят преимущественно из каолинита и называются каолинами. В состав глин входят различные оксиды (А1 20 3, Si0 2, Fe 20 3, CaO, Na 20, MgO), свободная и химически связанная вода и органические примеси.