Теория адекватного питания и трофология - Уголев Александр Михайлович 5 стр.


1.6. Аутотрофность человечества

На пути превращения биосферы в ноосферу В. И. Вернадский (см. 1980) в качестве одного из важнейших условий выдвигал формирование социальной аутотрофности человека. Следует отметить, что в данном случае речь идет именно о социальной, а не о биологической аутотрофности. Последняя подразумевает превращение человека в организм, обладающий свойствами растений и бактерий синтезировать углеводы из углекислого газа при участии солнечной энергии и фиксировать атмосферный азот. Такое толкование безусловно неправильно и противоречит смыслу прогрессивной эволюции. (О прогрессивной эволюции см.: Завадский, Колчинский, 1977; Тимофеев-Ресовский и др., 1977; Эволюция, 1981; Развитие эволюционной теории…, 1983; Эволюционные идеи…, 1984; Проблемы…, 1985; Татаринов, 1987, и др.).

Действительно, по мнению многих эволюционистов, формирование двигательной активности, а в конечном итоге на ее основании нервной деятельности и мышления, стало возможным лишь в результате биотрофии. Именно биотрофия позволила отказаться от огромного количества сложных биохимических процессов и от необходимости постоянной связи человека с определенным локусом Земли (подробнее см. обзор: Уголев, 1985).

Таким образом, при сохранении и совершенствовании питания, характерного для человека, речь идет о том, чтобы человек не оказывал разрушительного воздействия на биосферу, которое с течением времени возрастает и приобретает катастрофический характер.

Обращая внимание на взаимоотношения человечества как части биосферы с биосферой в целом, В. И. Вернадский писал: "Человек неразрывно связан в одно целое с жизнью всех живых существ, существующих или когда-либо существовавших… Человек связан с этим целым еще благодаря питанию. Эта новая связь, как бы она ни была тесна и необходима, совсем иного порядка, чем непрестанное чередование поколений живых существ… Правда, что эта связь составляет часть великого геохимического явления в обороте химических элементов в биосфере, вызванного питанием организованных существ. Однако связь эта может быть изменена, не затронув стойкости жизненного процесса в целом" (Вернадский, 1980. С. 231).

В. И. Вернадский обращал также внимание на то, что современный тип питания, основанный на использовании сельскохозяйственных продуктов и продуктов животноводства, стал, с одной стороны, разрушительной силой глобального значения, с другой - не удовлетворяет потребностей человечества в пище. Выход В. И. Вернадский видит в создании социальной аутотрофности, т. е. в переходе к питанию синтетическими продуктами, обладающими всеми необходимыми для жизнедеятельности свойствами.

Эти идеи замечательны в ряде отношений. В частности, В. И. Вернадский во многом предвосхитил те мысли, которые развиваются и в наше время, например в рекомендациях ООН и ее комитетов. Эти организации полагают, что снабжение населения планеты пищей, положенное в основу одной из главных программ, является одной из четырех самых важных задач, стоящих перед нами. В. И. Вернадский прав, говоря о том, что традиционные методы хозяйствования ради удовлетворения пищевых потребностей населения приводят к тяжелейшим экологическим последствиям. Значение этих идей не только сохраняется в наше время, но и возрастает. Вместе с тем В. И. Вернадский развивал замечательную мысль П.-Э.-М. Бертло, что прямое (парентеральное) питание, т. е. введение полезных пищевых веществ непосредственно в кровь, преобразует человека в новое существо. Он оперировал, как и его предшественники, довольно простыми представлениями о питании, которые были в то время. По всей вероятности, проблема парентерального питания гораздо сложнее, и вопрос о том, каким образом будет происходить совершенствование человека, должен обсуждаться на основе новых данных науки, в особенности новых данных трофологии (см. гл. 3 и 5).

В своем дополнении к основному труду по аутотрофности человечества В. И. Вернадский отметил некоторые сложности, возникающие в связи с питанием людей и животных синтетической пищей. Анализ этих вопросов и экспериментальная проверка влияния синтетической элементной диеты на организм послужили одной из причин ревизии теории сбалансированного питания и формирования теории адекватного питания (см. гл. 3). Эта теория не отрицает возможности перехода от современного, так называемого сельскохозяйственного, питания человечества к социальной аутотрофности, т. е. к промышленному питанию. Она лишь указывает на необходимость того, чтобы технология приготовления пищи и свойства последней были адекватны естественным технологиям ассимиляции пищевых веществ организмами различных типов, в том числе человеком (см.: Уголев, 1987а).

Наконец, в рамках современных представлений о трофических связях следует иметь в виду не только проблему входа, т. е. снабжения человечества пищей, но и проблему выхода, т. е. разрушения пищевых отходов и продуктов метаболизма. Решение этих проблем позволит предохранить природную среду от повреждающих влиянии, связанных с питанием человека и животных. Эта проблема огромной важности приобретает все большее значение.

1.7. Классическая и естественная классификации организмов на основе трофических процессов

Ранее по типу питания все организмы в зависимости от источника потребляемого углерода подразделялись на две основные группы: аутотрофов, к которым относили большинство растений и некоторые бактерии, и гетеротрофов - всех животных. Принималось, что организмы первой из этих двух групп используют лишь неорганические вещества, а второй - органические вещества наряду с неорганическими. Высказано предположение разделить гетеротрофов на биофагов-организмов, потребляющих другие живые организмы, и сапрофагов-организмов, использующих мертвые органические остатки (Wiegert, Owen, 1971).

Однако деление организмов на аутотрофов и гетеротрофов не представляется вполне удачным. Строго говоря, полная аутотрофия существовать не может, так как все живые существа нуждаются в поступлении пищи извне, т. е. в экзотрофии. При этом используются как органические материалы, так и неорганические, а значит каждый организм в какой-то мере является гетеротрофом и не может быть полным аутотрофом в прямом смысле этого термина.

В связи с принципиальными дефектами существующих классификаций нами предложена новая естественная классификация организмов, которая охватывает все разнообразие типов питания (Уголев, 1980, 1985). На одном полюсе этой классификационной шкалы находятся полные абиотрофы, на другом - полные биотрофы, а вся шкала между этими крайними группами занята организмами с возрастающей долей биотрофии. Под абиотрофами понимаются организмы, питающиеся только неорганическими компонентами, под биотрофами - организмы, потребляющие в качестве пищи органические и неорганические вещества, содержащиеся в биологических объектах. Старое понятие "гетеротроф" может быть использовано для обобщенного описания частичных и полных биотрофов. Термин "аутотроф" кажется неоправданным и должен быть заменен термином "абиотроф" (см. также гл. 9).

Переходы от абиотрофии к биотрофии сложны и постепенны. В сущности полностью абиотрофных организмов, т. е. тех, которые синтезируют все необходимые органические компоненты из неорганических, сейчас фактически не существует. Например, фотосинтезирующие организмы нельзя считать полными абиотрофами, так как они обычно не способны к фиксации азота неорганического происхождения (азот минеральных солей, который используется растениями, на самом деле тоже образуется при разложении организмов). Следовательно, растения абиотрофны по большинству, но не по всем характеристикам. С другой стороны, азотфиксирующие бактерии абиотрофны по азоту, но для получения энергии используют биологические источники пищи. Таким образом, хотя полностью абиотрофных организмов почти не существует, есть абиотрофные системы, образуемые комплексом "растение-азотфиксирующие бактерии". В большинстве случаев предпочтительнее говорить не об абиотрофных организмах, а об абиотрофных сообществах, или комплексах. Эти комплексы включают в себя организмы, синтезирующие безазотистые органические вещества (углеводы, липиды и др.), но нуждающиеся в органическом азоте, который они получают от бактериальных сообществ, и абиотрофы, фиксирующие азот, но использующие органические источники углерода. Биотрофия у некоторых животных становится почти полной, например у хищников, однако они используют воду и соли небиологического происхождения. Полная биотрофия характерна для некоторых монофагов (организмов, питающихся единственным видом пищи), паразитов, эмбрионов, симбионтов и некоторых других.

Биотрофия в широком смысле существует в нескольких вариантах, имеющих различное биологическое значение, но близкие, а иногда и идентичные механизмы. Первый вариант - естественная экзотрофия, т. е. питание живыми организмами или их частями, второй - сапрофитизм, т. е. питание продуктами жизнедеятельности других организмов, отмирающими организмами, их частями. К биотрофии относится и эндотрофия - питание за счет внутренних депо и собственных структур тела или клетки, например темновое питание растений, а также ассимиляция собственного органического вещества голодающими животными и человеком.

Новая естественная классификация организмов на основе трофических процессов позволяет преодолеть еще некоторые трудности, хотя выводы подчас кажутся парадоксальными. Действительно, с этой точки зрения для растений углекислый газ служит экзонутриентом. Для азотфиксирующих бактерий такими нутриентами являются азот и водород (вода). Нетрудно видеть, что в этом случае обнаруживаются фундаментальные различия трофических процессов у растений и животных. Так, у растений существует дополнительный трофический ярус - преобразование первичных пищевых веществ, связанное с усвоением неорганических веществ и внешней энергии, во вторичные питательные вещества. В отличие от растений животные смогли прогрессировать, утратив многочисленные реакции, связанные с этим первым ярусом, причем у животных в большинстве случаев экзо- и эндонутриенты почти совпадают. Наконец, чрезвычайно важно, что в большинстве случаев обмен энергии в биологических объектах, использующих кислород, является замкнутым циклом, сходным с предложенным недавно техниками экологически чистым кислородно-водородным технологическим циклом. Отличие заключается в том, что в большинстве случаев в биологических системах разделение водорода и кислорода не доводится до конца в том смысле, что выделения чистого водорода почти никогда не происходит. По-видимому, выделение чистого водорода было бы энергетически невыгодно, а кроме того, имело бы, по всей вероятности, глобальное отрицательное последствие - перемещение водорода в верхние слои атмосферы. В то же время включение водорода в соединения с углеродом дает возможность для построения экономичных запасов "топлива". Важно, что энергия составляет один из главных компонентов пищи, тогда как окислители не являются таковыми.

1.8. Происхождение и эволюция эндо- и экзотрофии
Трофика и происхождение жизни

В свете современных знаний ясно, что механизмы эндотрофии и экзотрофии родственны, а не противоположны, как представлялось ранее, когда экзотрофию рассматривали в качестве гетеротрофии, а эндотрофию - в качестве аутотрофии. Становится понятным, например, структурное и функциональное сходство микроворсинок кишечника, обеспечивающего внешнюю биотрофию, и микроворсинок плаценты, реализующей питание зародыша за счет матери.

Однако вернемся к истокам жизни. Наиболее вероятно, что первичные носители жизни были примитивными и не имели сложного аппарата, необходимого для фиксации азота и фотосинтеза (см. также гл. 9). Они получали основные органические материалы в виде мономеров из небиологических источников (возможно, из омывающего их раствора). Следовательно, скорее всего, они были абиотрофами, потребляющими органические вещества. По-видимому, уже на ранних стадиях эволюции образовались ферментные системы, обеспечивающие частичное гидролитическое расщепление внутренних структур таких носителей жизни для использования их в качестве источника энергии и для построения новых структур. Такие гидролазы были, вероятно, наиболее древними. Можно предположить, что они первоначально обеспечивали перестройку структур и эндотрофию, а затем могли использоваться для утилизации соседних, но отмирающих организмов и их структур. Следовательно, гидролазы служили основой для формирования эндотрофии, а на более поздних этапах - экзотрофии.

Так, на базе первичной эндотрофии формировалась экзотрофия всех известных живых организмов. Эта древность происхождения и первичность эндотрофии позволяют понять сходство эндо- и экзотрофических процессов и осуществляющих их систем у столь далеких друг от друга организмов, как бактерии, высшие растения и животные. Кроме того, становится ясно, что все основные типы пищеварения сформировались на этой общей основе и сходны у всех организмов. Действительно, внеклеточное, мембранное и внутриклеточное пищеварение у всех живых организмов обладает многими общими чертами. Системы же фото- и хемосинтеза, необходимые для абиотрофии, - это более поздние и весьма специализированные достижения эволюции.

Принципиальное сходство механизмов ассимиляции пищевых веществ с помощью деполимеризующих систем (т. е. механизмов пищеварения) у большинства организмов имеет огромное адаптивное значение. Благодаря этому сходству организмы могут приспосабливаться к изменению места в трофической цепи (за исключением первого организма, у которого органические вещества синтезируются из неорганических). Другими словами, принципиально возможно превращение растительноядных организмов в хищников того или иного порядка или в паразитов; возможен переход от хищничества к сапрофитному питанию, и т. д.

На основе общих механизмов возникли такие специализированные способы питания, как эмбриональное и молочное. Таким образом, сходство, а иногда идентичность механизмов ассимиляции пищи у различных организмов - не случайность, а отражение эволюционной общности их происхождения.

Один из остро дискутируемых вопросов, возникающих при анализе происхождения жизни на Земле, - это вопрос о пищевых источниках для первичных, наиболее примитивных живых систем, не способных к сложным синтезам. Предполагается, что такие системы использовали первичный бульон, содержащий все необходимые мономеры (см. также гл. 9). Мы обсуждали вопрос о появлении наиболее древних форм гетеротрофии и высказали предположение, что они возникли на основе первичной абиотрофии, связанной с использованием собственных структур тела протобионтов под воздействием собственных гидролаз при нехватке пищевых ресурсов - протоголоде. Ферменты, осуществляющие гидролиз таких структур, могли затем использоваться для расщепления структур соседних протобионтов, особенно погибавших в силу тех или иных причин. Возможно, в таких случаях гидролиз происходил как под влиянием ферментов, выделяющихся поглощающим организмом (протосекреция), так и в результате аутолиза погибших протобионтов. Как отмечено выше, в ходе дальнейшей эволюции аутолиз, в частности индуцированный, получил большое распространение в животном мире в качестве механизма начальных стадий гидролиза пищи. В этой связи важны соображения Н. Горовица (Horowitz, 1945) о происхождении синтеза органических молекул и появлении аутотрофии. В 1945 г. он высказал предположение относительно того, что по мере исчерпания внешних пищевых ресурсов выживали лишь те формы протобионтов, которые были способны к синтезу недостающих пищевых веществ (см. гл. 9).

Следовательно, по всей вероятности, уже на ранних стадиях развития жизни трофические связи стали играть большую роль. При этом процесс эволюции в значительной степени определялся доступностью и качеством источников питания и энергии.

1.9. Замкнутые трофические системы

Решение многих задач на Земле и за ее пределами требует создания искусственных, полностью или почти полностью замкнутых трофических систем или даже небольших биосфер. В таких системах с участием организованных в трофические цепи организмов различных видов и должен происходить круговорот веществ, как правило, для поддержания жизни больших и малых сообществ людей или животных. Формирование искусственных замкнутых трофических систем и искусственных микробиосфер имеет непосредственное прикладное значение при освоении космического пространства, мирового океана и пр.

Проблема создания замкнутых трофических систем, в особенности необходимых при длительных космических полетах, давно волнует исследователей и мыслителей. По этому поводу были развиты многие фундаментальные идеи. В отношении таких конструируемых человеком систем были выдвинуты важные, хотя в ряде случаев и нереальные требования. Речь идет о том, что трофические системы должны быть в высокой степени продуктивными, надежными, должны обладать высокими скоростями и полнотой дезактивации токсических компонентов. Ясно, что реализовать такую систему исключительно трудно. Действительно, высказывались сомнения о возможности конструирования безопасной и надежной экосистемы (обзор: Odum, 1986). Тем не менее следует попытаться хотя бы определить максимальную емкость трофической системы, образно говоря, выяснить, каким должен быть маленький остров, пригодный для жизни Робинзона Крузо, если он будет накрыт прозрачным, но непроницаемым колпаком.

В качестве примера можно привести недавно разработанную модель искусственной биосферы (биосфера II), которая является стабильной замкнутой системой и необходима для жизни в различных областях космического пространства, в том числе на Луне и Марсе (обзор: Allen, Nelson, 1986). Она должна моделировать условия жизни на Земле, для чего следует хорошо знать природные технологии нашей планеты. Кроме того, такая биосфера должна содержать инженерные, биологические, энергетические, информационные открытые системы, живые системы, накапливающие свободную энергию, и т. д. Как и биосфера, искусственная биосфера должна включать в себя подлинную воду, воздух, скалы, землю, растительность и т. д. Она должна моделировать джунгли, пустыни, саванну, океан, болота, интенсивное земледелие и т. д., напоминающие родину человека (рис. 1.8). При этом оптимальное отношение искусственного океана и поверхности суши должно составлять не 70:30, как на Земле, а 15:85. Однако океан в искусственной биосфере должен быть по крайней мере в 10 раз более эффективным, чем настоящий.

Назад Дальше