Эволюция разума - Курцвейл Рэймонд 22 стр.


Когда фон Нейман сравнивал возможности массированной параллельной активности мозга с немногочисленными компьютерами того времени, казалось очевидным, что мозг отличается гораздо большей памятью и скоростью. Сегодня уже сконструирован первый суперкомпьютер, по самым консервативным оценкам, удовлетворяющий тем функциональным требованиям, которые нужны для моделирования функций человеческого головного мозга (около 10 операций в секунду). (По моему мнению, компьютеры такой мощности в начале 2020-х гг. будут стоить около 1000 долларов.) Что касается объема памяти, мы продвинулись еще дальше. Труд фон Неймана появился в самом начале компьютерной эры, но ученый был уверен в том, что в какой-то момент мы сможем создавать компьютеры и компьютерные программы, способные имитировать человеческий мозг; именно поэтому он и готовил свои лекции.

Фон Нейман был глубоко убежден в ускорении прогресса и в его значительном влиянии на жизнь людей в будущем. Через год после смерти фон Неймана, в 1957 г., его коллега математик Стэн Юлам цитировал слова фон Неймана, сказавшего в начале 1950-х гг., что "любое ускорение технологического прогресса и изменения образа жизни людей создает впечатление приближения некой важнейшей сингулярности в истории человеческой расы, за пределами которой человеческая деятельность в том виде, какой мы знаем ее сегодня, больше не может продолжаться". Это первый известный случай использования слова "сингулярность" для описания технологического прогресса человечества.

Важнейшая догадка фон Неймана заключалась в обнаружении сходства между компьютером и мозгом. Заметим, что частью человеческого интеллекта является эмоциональный интеллект. Если догадка фон Неймана верна и если согласиться с моим утверждением, что небиологическая система, удовлетворительно воспроизводящая интеллект (эмоциональный и другой) живого человека, обладает сознанием (см. следующую главу), придется сделать вывод, что между компьютером (с правильным программным обеспечением) и сознательным мышлением имеется явное сходство. Итак, был ли прав фон Нейман?

Большинство современных компьютеров - полностью цифровые машины, тогда как человеческий мозг использует как цифровые, так и аналоговые методы. Однако аналоговые методы легко воспроизводятся в цифровом варианте с любой степенью точности. Американский специалист в области компьютерных технологий Карвер Мид (род. в 1934 г.) показал, что аналоговые методы мозга можно напрямую воспроизвести в кремниевом варианте, и реализовал это в виде так называемых нейроморфных чипов. Мид продемонстрировал, что данный подход может быть в тысячи раз более эффективным, чем цифровая имитация аналоговых методов. Если речь идет о кодировании избыточных алгоритмов новой коры, возможно, имеет смысл воспользоваться идеей Мида. Исследовательская группа IBM под руководством Дхармендра Модхи применяет чипы, имитирующие нейроны и их контакты, в том числе их способность образовывать новые контакты. Один из чипов, названный SyNAPSE, напрямую модулирует 256 нейронов и примерно четверть миллиона синаптических связей. Цель проекта заключается в симуляции новой коры, состоящей из 10 млрд нейронов и 100 трлн контактов (что эквивалентно человеческому мозгу), которая использует всего один киловатт энергии.

Более пятидесяти лет назад фон Нейман заметил, что процессы в головном мозге происходят чрезвычайно медленно, но отличаются массированной параллельностью. Современные цифровые схемы действуют как минимум в 10 млн раз быстрее, чем электрохимические переключатели мозга. Напротив, все 300 млн распознающих модулей коры мозга действуют одновременно, и квадрильон контактов между нейронами может активизироваться в одно и то же время. Следовательно, для создания компьютеров, которые могли бы адекватно имитировать человеческий мозг, необходимы соответствующий объем памяти и производительность вычислений. Нет нужды напрямую копировать архитектуру мозга - это очень неэффективный и негибкий метод.

Какими же должны быть соответствующие компьютеры? Многие исследовательские проекты направлены на моделирование иерархического обучения и распознавания образов, происходящих в новой коре. Я сам занимаюсь подобными исследованиями с привлечением иерархических скрытых моделей Маркова. По моим оценкам, для моделирования одного цикла распознавания в одном распознающем модуле биологической новой коры требуется около 3000 вычислений. Большинство симуляций построено на значительно меньшем числе вычислений. Если принять, что головной мозг осуществляет около 10 (100) циклов распознавания в секунду, получаем общее число 3 х 10 (300 тыс.) вычислений в секунду для одного распознающего модуля. Если же умножить это число на общее число распознающих модулей (3 х 10 (300 млн, по моим оценкам)), получаем 10 (100 трлн) вычислений в секунду. Примерно такое же значение я привожу в книге "Сингулярность уже близка". По моим прогнозам, для функциональной симуляции головного мозга требуется скорость от 10 до 10 калькуляций в секунду. По оценкам Ганса Моравека, основанным на экстраполяции данных для начальной обработки зрительных сигналов во всем головном мозге, это значение составляет 10 калькуляций в секунду, что совпадает с моими расчетами.

Стандартные современные машины могут работать со скоростью до 10 калькуляций в секунду, однако с помощью ресурсов облака их производительность можно существенно увеличить. Самый быстрый суперкомпьютер, японский компьютер "К", уже достиг скорости 10 калькуляций в секунду. Учитывая массированную избыточность алгоритмов новой коры, хороших результатов можно добиться с помощью нейроморфных чипов, как в технологии SvNAPSE.

Что касается требований к памяти, нам нужно около 30 бит (примерно 4 байта) для каждого контакта с одним из 300 млн распознающих модулей. Если к каждому распознающему модулю подходит в среднем восемь сигналов, получаем 32 байта на распознающий модуль. Если учесть, что вес каждого входного сигнала составляет один байт, получаем 40 байт. Добавим 32 байта для нисходящих контактов - и получим 72 байта. Замечу, что наличие восходящих и нисходящих разветвлений приводит к тому, что число сигналов намного больше восьми, даже если учесть, что многие распознающие модули пользуются общей сильно разветвленной системой связей. Например, в распознавании буквы "p" могут участвовать сотни распознающих модулей. Это означает, что тысячи распознающих модулей следующего уровня участвуют в распознавании слов и фраз, содержащих букву "p". Однако каждый модуль, ответственный за распознавание "p", не повторяет это древо связей, питающих все уровни распознавания слов и фраз с "p", у всех этих модулей древо связей общее.

Сказанное выше верно и для нисходящих сигналов: модуль, ответственный за распознавание слова apple, сообщит всей тысяче стоящих ниже модулей, ответственных за распознавание "e", что ожидается образ "e", если уже распознаны "a", "p", "p" и "l". Это древо связей не повторяется для каждого модуля, распознающего слово или фразу, который хочет информировать модули нижестоящего уровня, что ожидается образ "e". Это древо общее. По этой причине среднее оценочное значение в восемь восходящих и восемь нисходящих сигналов для каждого распознающего модуля является вполне разумным. Но даже если мы повысим это значение, это не сильно изменит конечный результат.

Итак, с учетом 3 х 10 (300 млн) распознающих модулей и 72 байт памяти для каждого, получаем, что общий объем памяти должен составлять около 2 х 10 (20 млрд) байт. А это весьма скромное значение. Такой памятью обладают обычные современные компьютеры.

Все эти расчеты мы выполнили для приблизительной оценки параметров. Учитывая, что цифровые схемы примерно в 10 млн раз быстрее сетей нейронов в биологической коре, нам не нужно воспроизводить массированный параллелизм человеческого мозга - весьма умеренного параллельного процессинга (по сравнению с триллионным параллелизмом в головном мозге) будет вполне достаточно. Таким образом, необходимые вычислительные параметры вполне достижимы. Способность нейронов головного мозга к переподключению (помним, что дендриты постоянно создают новые синапсы) тоже можно имитировать с помощью соответствующего программного обеспечения, поскольку компьютерные программы гораздо пластичнее биологических систем, которые, как мы видели, впечатляют, но имеют пределы.

Избыточность мозга, необходимая для получения инвариантных результатов, безусловно, может быть воспроизведена в компьютерном варианте. Математические принципы оптимизации подобных самоорганизующихся иерархических систем обучения вполне понятны. Организация мозга далеко не оптимальна. Но она и не должна быть оптимальной - она должна быть достаточно хорошей, чтобы обеспечить возможность создавать инструменты, компенсирующие ее собственные ограничения.

Еще одно ограничение новой коры заключается в том, что в ней нет механизма, устраняющего или хотя бы оценивающего противоречащие друг другу данные; отчасти это объясняет весьма распространенную нелогичность человеческих рассуждений. Для решения данной проблемы у нас есть весьма слабая способность, называемая критическим мышлением, но люди ею пользуются гораздо реже, чем следовало бы. В компьютерной новой коре можно предусмотреть процесс, выявляющий противоречащие данные для их последующего пересмотра.

Важно отметить, что конструирование целого отдела мозга осуществить проще, чем конструирование одного нейрона. Как уже было сказано, на более высоком уровне иерархии модели часто упрощаются (тут просматривается аналогия с компьютером). Чтобы понять, как работает транзистор, нужно в деталях понимать физику полупроводниковых материалов, а функции одного реального транзистора описываются сложными уравнениями. Цифровая схема, осуществляющая перемножение двух чисел, содержит сотни транзисторов, но для создания модели такой схемы хватит одной или двух формул. Целый компьютер, состоящий из миллиардов транзисторов, можно смоделировать с помощью набора инструкций и описания регистра на нескольких страницах текста с привлечением нескольких формул. Программы для операционных систем, компиляторов языков или ассемблеров достаточно сложны, однако моделирование частной программы (например, программы распознавания языка на основе скрытых иерархических моделей Маркова) тоже сводится к нескольким страницам формул. И нигде в подобных программах вы не встретите детального описания физических свойств полупроводников или даже компьютерной архитектуры.

Аналогичный принцип верен и для моделирования мозга. Один конкретный распознающий модуль новой коры, который детектирует определенные инвариантные зрительные образы (например, лица), осуществляет фильтрацию звуковых частот (ограничивая входной сигнал определенным диапазоном частот) или оценивает временную близость двух событий, можно описать с помощью гораздо меньшего числа специфических деталей, чем реальные физические и химические взаимодействия, контролирующие функции нейромедиаторов, ионных каналов и других элементов нейронов, участвующих в передаче нервного импульса. Хотя все эти детали необходимо тщательно предусмотреть до перехода на следующий уровень сложности, при моделировании операционных принципов головного мозга многое можно упростить.

Глава девятая
Мысленные эксперименты по анализу разума

Разум - это просто то, что делает мозг.

Марвин Минский. Общество разума, 1986

При конструировании разумных машин не следует удивляться, если они окажутся столь же непоследовательными и упрямыми, как и люди, в вопросах разума, сознания, свободы воли и т. д.

Марвин Минский

Кто обладает сознанием? Подлинная история вашего сознания начинается с первой лжи.

Иосиф Бродский

Страдание - единственная причина сознания.

Федор Достоевский

Есть растения, которые питаются органической пищей при помощи своих цветов: когда муха садится на цветок, лепестки закрываются и удерживают ее, пока растение не всосет насекомое в себя; но цветок закрывается только тогда, когда в него попадает что-то пригодное для еды; капля дождя или кусок веточки не привлекают его внимания. Удивительно, что столь несознательное существо с таким вниманием преследует свои интересы. Если это отсутствие сознания, то в чем же заключается сознание?

Сэмюэл Батлер, 1871

До сих пор мы рассматривали мозг как некую систему, способную осуществлять функции определенной сложности. Однако в таком ракурсе мы сами оставались вне поля зрения. Кажется, что мы живем в нашем мозге, что наша жизнь субъективна. Как объективный взгляд на мозг, которого мы придерживались до сих пор, связан с нашими ощущениями, с нашим существом, обладающим некоторым опытом?

Британский философ Колин Макгинн (род. в 1950 г.) пишет, что "сознание может довести даже самого утонченного мыслителя до бессвязного бормотания". Суть в том, что люди часто не понимают точного смысла этого термина.

Многие наблюдатели рассматривают сознание в качестве формы проявления личности, например способности обдумывать собственные мысли и объяснять их. Я предпочитаю определять сознание как способность думать о своем мыслительном процессе. Казалось бы, мы в состоянии оценить эту способность и применить данный тест для того, чтобы отличать сознательное от несознательного.

Однако выясняется, что применить этот подход достаточно сложно. Сознателен ли новорожденный ребенок? Сознательна ли собака? Они не могут описать свой мыслительный процесс. Некоторые люди полагают, что младенцы и собаки не являются сознательными существами именно по той причине, что не могут объясниться. А что можно сказать о компьютере по имени Ватсон? В определенном режиме он может объяснить, каким образом он пришел к тому или иному ответу. Поскольку у Ватсона есть модель собственного мышления, выходит, он является сознательным существом, а младенцы и собаки - нет?

Прежде чем глубже изучить этот вопрос, важно рассмотреть один его важный аспект: что говорит нам на эту тему наука и что остается в ведении философии? Одна точка зрения заключается в том, что философия занимается вопросами, для которых еще не выработан научный метод изучения. Если это так, то по мере прогресса науки, достаточного для разрешения определенного круга вопросов, философы переключаются на другие проблемы, пока наука не доберется и до них. В вопросах, касающихся сознания, такая точка зрения весьма популярна. В том числе она относится к вопросу о том, кто и что обладает сознанием.

Вот что пишет на эту тему философ Джон Серль: "Мы знаем, что мозг формирует сознание при помощи специфических биологических механизмов… Важно признать, что сознание - это биологический процесс, как пищеварение, лактация, фотосинтез или митоз… Мозг - это машина, точнее, биологическая машина, но все же машина. Так что на первом этапе нужно понять, как действует мозг, а затем создать искусственную машину, обладающую столь же эффективным механизмом формирования сознания". Люди часто удивляются, прочтя это высказывание, поскольку считают, что Серль трепетно защищает тайну сознания от таких редукционистов, как Рэй Курцвейл.

Австралийский философ Дэвид Чалмерс (род. в 1966 г.) придумал термин "трудная проблема сознания" для отражения сложностей, возникающих при попытках точно сформулировать эту неясную концепцию. Иногда емкое выражение вбирает в себя всю суть какого-либо направления мысли, так что оно становится эмблематичным (как выражение Ханны Арендт "банальность зла"). Знаменитое выражение Чалмерса тоже прекрасно справляется с этой задачей.

При обсуждении проблем сознания очень легко соскользнуть на рассмотрение тех наблюдаемых и измеряемых атрибутов, которые мы связываем с сознанием, но при этом теряется сама суть идеи. Это концепция метакогнитивности (осмысление собственного мышления). Другие наблюдатели объединяют сознание и эмоциональный или моральный интеллект. Но и тут, опять же, наша способность выражать любовь, шутить или быть сексуально привлекательным - просто проявления нашей натуры, возможно, впечатляющие и разумные, но именно те, что можно наблюдать и измерить (даже если способы их оценки неочевидны). Понимание того, как мозг выполняет эти функции и что в нем в это время происходит, относится, в терминологии Чалмерса, к разряду "легких" проблем сознания. Конечно, эту проблему неправильно назвать "легкой"; она относится к числу самых сложных и важных научных вопросов современности. Однако "трудная" проблема Чалмерса настолько трудна, что ее практически невозможно сформулировать.

Чтобы продемонстрировать это разграничение, Чалмерс использует мысленный эксперимент с участием "зомби". "Зомби" из этого эксперимента действует абсолютно так же, как человек, но только не имеет субъективного опыта, то есть является существом несознательным. Чалмерс утверждает, что раз мы в состоянии выдумать зомби, то по крайней мере логически их существование возможно. Представьте себе, что вы на вечеринке, где присутствуют и зомби, и "нормальные" люди. Как вы их различите? Возможно, вы даже бывали на такой вечеринке.

Многие люди считают, что следовало бы расспросить "испытуемых" об их эмоциональных реакциях на события или идеи. Они полагают, что зомби проявят отсутствие субъективного опыта, так как затруднятся ответить на некоторые эмоциональные вопросы. Однако ответы такого рода просто не учитывают допущений мысленного эксперимента. В эксперименте мы можем встретить неэмоционального человека (подобный эмоциональный дефицит, например, бывает у людей с некоторыми формами аутизма), аватара или робота, не обладающего человеческими эмоциями, но они не зомби. Вспомним: в соответствии с определением Чалмерса, зомби совершенно нормально отвечает на вопросы и способен эмоционально реагировать, у него нет только субъективного опыта. Проблема в том, что идентифицировать зомби нам не удастся, поскольку по определению в его поведении не проявляются никакие признаки его натуры. Так что же это за разграничение без различий?

Назад Дальше