Пища богов
Многие считают, что кофеин содержится и в другом излюбленном продукте – шоколаде. Однако это не так. Главным компонентом шоколада, оказывающим влияние на работу мозга, является горькое на вкус химическое вещество, принадлежащее к тому же семейству, что и кофеин, – теобромин. В вольном переводе с греческого это название означает "пища богов". Теобромин оказывает схожее с кофеином действие, но не столь выраженное. Любовь к шоколаду объясняется, помимо этого, сладким вкусом (вызванным добавлением сахара) и температурой плавления, близкой к температуре человеческого тела.
Хорошо известно, что собак не следует кормить шоколадом, потому что теобромин для них ядовит. Маленькую собачку убивают уже 50 г черного шоколада (который содержит больше теобромина, чем молочный). Но проблема не ограничивается только собаками. Теобромин в той или иной степени является ядом для всех млекопитающих. В частности, он очень токсичен для кошек, но у этих животных отсутствуют рецепторы сладкого вкуса, поэтому они не испытывают желания есть шоколад.
Теобромин ядовит и для человека, но это не должно вызывать у вас опасений. Любое вещество в больших количествах (даже вода) является ядом. У людей естественная переносимость теобромина в расчете на килограмм собственного веса втрое выше, чем у собак. Кроме того, человек, как правило, и весит больше, чем собака. Чтобы получить смертельную дозу яда, взрослый человек должен съесть более пяти килограммов молочного шоколада.
Кстати, вопрос о дозировке надо всегда иметь в виду, когда вы покупаете "экологически чистые" продукты питания, чтобы уберечься от вредного воздействия пестицидов на организм. Практически любое вещество таит в себе какую-то опасность, но пестициды попадают в наш организм в таких ничтожных количествах, что риск от них минимален. Все растения содержат природные пестициды, которые так же опасны для нас, как и искусственные.
Конечно, перед употреблением овощи и фрукты всегда нужно мыть (хотя бы из-за бактерий, живущих в почве), но если вы проанализируете факторы, которые могут привести к заболеванию раком, то в типичном рационе питания 93 процента факторов риска приходится на алкоголь, а 2,6 процента – на кофе. Если мы устраним из рациона все относительно опасные природные источники риска типа латука, перца, моркови, корицы и апельсинового сока, то оставшийся фактор риска – пестицид этилентиомочевина – составит всего 0,05 процента. Если содержание всех вместе взятых химических средств борьбы с вредителями находится в пределах установленных законом норм, то опасность заболеть после их употребления не выше, чем после употребления сельдерея.
Я не пытаюсь убедить вас, что надо избегать сельдерея и апельсинового сока. Главное – разумно оценивать степень риска.
Супертаблетка
Хочу привести вам еще один пример вещества, оказывающего значительное влияние на мозг и организм в целом, к которому мы уже настолько привыкли, что воспринимаем его как нечто само собой разумеющееся. Еще за 2 тысячи лет до нашей эры люди использовали отвар коры ивы и вытяжку из таволги как средство от головной боли, жара и воспалений. Упоминание об этом содержится в шумерских памятниках письменности времен 3‑й династии Ура. На протяжении всех времен указанные средства пользовались большой популярностью.
В XVIII веке вследствие одного недоразумения спрос на ивовую кору вырос еще больше. В то время для лечения смертельно опасной малярии использовался хинин, добываемый из коры хинного дерева, но он был очень дорогим. В качестве замены врачи рекомендовали значительно более дешевую кору ивы. Впоследствии выяснилось, что ивовая кора, в отличие от хинина, лишь снимает симптомы, но не излечивает от малярии, однако в то время ее популярность резко возросла.
Единственная проблема заключалась в том, что это лекарство очень негативно влияло на желудок. Его активный ингредиент, известный нам сегодня как салициловая кислота, устранял головную боль и жар, но вызывал расстройство пищеварения и острую боль в желудке, а иногда даже становился причиной опасного желудочного кровотечения.
В 1899 году немецкая химическая компания "Bayer" сумела найти частичное решение этой проблемы. Производное салициловой кислоты – ацетилсалициловая кислота – обладала теми же медицинскими свойствами, но не столь агрессивно влияла на желудок. Новое средство назвали аспирином. Оно стало одним из самых продаваемых медикаментов фирмы "Bayer" наряду с популярным средством от кашля – героином! Право на его производство имела только эта компания. Правда, сегодня некоторые страны, в частности Великобритания, имеют право производить аспирин от своего имени. Как ни странно, это право было получено в результате заключения мирного договора.
Двадцать восьмого июня 1919 года в Версале был подписан договор, определявший размер репараций, которые Германия должна была уплачивать по итогам Первой мировой войны. Большая часть этого договора, как и ожидалось, касалась новых границ, ограничений численности вооруженных сил и вооружений, финансовых компенсаций и поставок промышленной продукции странам-победителям. И в числе этих основополагающих требований вдруг оказалось право на использование наименования "Аспирин".
В то время как в Германии (и еще в 80 странах мира) аспирин по-прежнему является торговой маркой компании "Bayer", в Великобритании и других странах, подписавших Версальский договор, использовать это название имеет право любой производитель. Вам может показаться, что такое мелкое требование недостойно того, чтобы становиться частью исторического договора, но в то время обе воюющие стороны сильно пострадали от пандемии испанки, распространившейся по всему миру в конце войны, поэтому аспирин стал продуктом первой необходимости.
На протяжении 50 лет аспирин оставался чрезвычайно важным медикаментом. В моем детстве он был единственным популярным болеутоляющим средством, продававшимся без рецепта. Однако в 1970‑е годы он уступил позиции более безвредному для желудка парацетамолу. В США его называют ацетаминофеном, но он больше известен под торговыми наименованиями "Панадол" (производства компании "Bayer") и "Тайленол". Казалось бы, об аспирине можно забыть, но тут выяснилось, что он является профилактическим средством от инфарктов и инсультов.
Болеутоляющие и противовоспалительные свойства аспирина объясняются блокированием фермента циклооксигеназы. Ферменты представляют собой специальные белки, которые способствуют химическим реакциям в организме. Циклооксигеназа, в частности, стимулирует производство нескольких гормонов, являющихся причиной воспалительных процессов и передающих болевые сигналы в мозг. Подавляя эти реакции, аспирин устраняет боль. Но наряду с этим было установлено, что он снижает активность тромбоксана – вещества, стимулирующего деятельность тромбоцитов. Тромбоциты отвечают за свертывание крови, что очень важно для заживления ран, но если сгустки начнут образовываться в сосудах, они могут полностью перекрыть кровоток, что приведет к инфаркту миокарда или инсульту. Постоянный прием небольших доз аспирина для предотвращения этого риска уже вошел в привычку у многих людей.
Обнаружение новых свойств аспирина позволило ему начать новую жизнь. Каждый год производится около 35 тысяч тонн этого средства. Как и кофеин, аспирин представляет собой относительно простое соединение, которое взаимодействует со сложными сигнальными механизмами тела, давая положительные результаты.
От химической энергии к сокращению мышц
Итак, то, что попадает к нам в желудок, может приносить пользу с медицинской точки зрения и доставлять удовольствие, но все же главное, для чего мы едим, – это производство энергии. Мы уже говорили о том, что переваривание пищи представляет собой процесс медленного горения, в ходе которого вырабатывается энергия. Она запасается в молекулах АТФ, откуда ее берут мышцы, совершающие движения. Сокращение мышц происходит благодаря двум белкам, один из которых "ползет" по волокну другого, попеременно совершая захват и подтягиваясь, словно при лазании по канату. Этот процесс инициируется электрическим сигналом.
О возбуждении мышц при помощи электричества было известно уже давно, и это привело к созданию очень известного фильма ужасов. Как-то летом одна молодая женщина по имени Мэри Уолстонкрафт Годвин отправилась в романтическую поездку со своим женихом и захватила с собой несколько книг для чтения. В их числе оказался отчет итальянского ученого Луиджи Гальвани о своей работе. Выйдя замуж, Мэри сменила фамилию на Шелли. Однажды в Швейцарии в дождливый день ей пришла в голову идея романа "Франкенштейн".
Проводя эксперименты с препарированными лягушками, Гальвани случайно коснулся проводом под напряжением мышцы лягушачьей ноги, и та дернулась, словно лягушка была еще жива. Хотя многое в этом явлении в то время интерпретировалось неверно (в том числе и миссис Годвин), это было началом понимания того, какую роль электричество играет в организме животных и каким образом с его помощью передаются сигналы.
Как совершается работа
До сих пор я говорил об энергии как о хорошо понятной всем концепции, однако все же следует пояснить, о чем идет речь. Мы уже видели, что энергия и материя – разные проявления одной и той же сущности, однако для того, чтобы превратить материю в энергию, необходим особый процесс, например термоядерный синтез или аннигиляция материи и антиматерии. В организме человека химическая энергия, запасенная в электронных связях, которые обеспечивают соединение атомов в молекулах, высвобождается и превращается в механическую энергию мышц.
Как это происходит? Энергия сама по себе не совершает работы. Работа – это трансформация энергии из одного состояния в другое. Например, когда мы передвигаем предметы, работа измеряется количеством прилагаемых усилий, умноженным на расстояние.
Когда-то под работой понимался только физический труд. В наши дни работа многих людей не связана с физическими усилиями, но даже умственный труд требует трансформации энергии, и зачастую необходимо сначала поработать головой и только потом руками. Например, чтобы написать книгу, надо сначала придумать оригинальную идею.
Процесс обдумывания не связан с физическими усилиями. Они понадобятся позже, в процессе печатания рукописи и издания книги. В общих чертах можно сказать, что задача тела заключается в преобразовании химической энергии в работу.
Работа и энергия измеряются в джоулях. В повседневной жизни мы все еще пользуемся устаревшей единицей измерения – калорией, которая составляет чуть больше четырех джоулей. Энергетическую ценность продуктов питания мы измеряем в тысячах калорий (килокалориях). Американские диетологи посчитали, что приставка "кило" будет вводить публику в заблуждение, поэтому в обиходе заменяют, к примеру, 129 килокалорий на 129 калорий (что явно неправильно) или 129 Калорий (написание с заглавной буквы в данном случае формально верно, но приводит к путанице).
Великая загадка шмеля
Каждый раз, совершая движение, вы используете энергию, запасенную организмом. Это совершенно очевидно. Однако некоторые животные, похоже, расходуют на движение больше энергии, чем получают ее с пищей. Получается, что они берут энергию как бы ниоткуда. Самым известным примером является шмель. Возможно, вам уже приходилось слышать: "Это просто загадка какая-то. Никто не понимает, почему шмель способен летать. У науки нет ответа". Зачастую подобные высказывания приводятся в качестве доказательства, что Бог способен создать то, чего не может объяснить наука.
В действительности так называемый парадокс шмеля – это не более чем заблуждение. Да, на первый взгляд кажется странным, что такое большое тело удерживается в воздухе с помощью маленьких и хрупких крылышек. Но шмель имеет на удивление низкий вес, а его крылья совсем не похожи на крылья птиц, и их подъемная сила создается за счет иных явлений. Они напоминают вертолетный винт, создающий вертикально направленные вращающиеся потоки воздуха, которые обладают большей подъемной силой, чем потоки воздуха, обтекающие крыло обычного самолета. Таким образом, здесь нет никакой проблемы. Шмелю не приходится тратить больше энергии, чем он потребляет.
Кенгуру на пружинах
Есть еще один представитель животного мира, который в определенном смысле расходует больше энергии, чем получает. Это кенгуру. Если сложить всю энергию, которая нужна ему для прыжков в течение дня, то она явно окажется выше, чем та, что он потребляет с пищей. Создается впечатление, что он производит энергию из ничего.
Однако при выполнении этих расчетов биологи упустили из виду, что мышцы ног кенгуру устроены наподобие резинового мяча. Если уронить мяч, то при ударе об пол он сжимается, накапливая энергию, а затем за счет упругости восстанавливает форму. При этом высвобождается энергия, отталкивающая его от пола. Точно так же энергия накапливается в пружине и растягиваемой резиновой ленте. Никакой дополнительной энергии извне в систему не поступает, но мяч подпрыгивает в воздух за счет энергии, запасенной при деформации от удара об пол.
Нечто похожее происходит и с кенгуру. Его мышцы устроены таким образом, что, когда ноги ударяются о землю, в них накапливается энергия, словно при растяжении резиновой ленты. Затем она высвобождается и используется для следующего прыжка. Таким образом, кенгуру для движения нуждается в меньшем количестве пищи. Если бы не эта специфическая конструкция мышц, то вся энергия при приземлении превращалась бы в звук и тепло. Однако, как мы видим, часть ее запасается для повторного использования. Точно так же электрический транспорт использует процесс торможения для пополнения заряда аккумуляторов, который будет расходоваться при последующем разгоне.
Тепло – это движение
Рассматривая движение энергии в своем теле и в теле кенгуру, мы имеем дело с термодинамикой. Если разложить это слово на составные части, получается "движение тепла". Так оно и есть, если вспомнить, что тепло является одной из форм энергии. Тепло – это кинетическая энергия движущихся молекул вещества. Нагрейте любой предмет – и его молекулы начнут двигаться быстрее. Термодинамика приобрела особое значение в XIX веке, так как позволила объяснить принцип работы паровых двигателей. С тех пор она стала фундаментальной частью науки.
О значении термодинамики свидетельствует изречение одного из самых великих ученых XX века Артура Эддингтона: "Если кто-то указывает на то, что ваша теория устройства Вселенной противоречит уравнениям Максвелла (описывающим электромагнитные явления), то тем хуже для Максвелла. Если обнаруживается, что она противоречит наблюдениям, то не исключено, что экспериментаторы что-то напутали. Но если ваша теория вступает в противоречие со вторым началом термодинамики, то у вас нет никакой надежды. Вы потерпите крах и будете осмеяны".
Ко второму началу термодинамики, о котором говорит Эддингтон, мы вернемся чуть позже, а пока поговорим об остальных. Как ни парадоксально, но термодинамика начинается с нулевого закона (или начала). Он получил такое название потому, что был сформулирован после первых трех, но фактически является для них основой. Этот закон гласит, что при контакте двух тел, имеющих одинаковую температуру, передачи тепла между ними не происходит. Поскольку тепло представляет собой движение молекул, то передача энергии от одного тела другому и обратно, конечно же, осуществляется, но она взаимно компенсируется и сводится к нулю.
Первое начало термодинамики состоит в том, что в любой изолированной системе запас энергии остается неизменным (закон сохранения энергии). Ее нельзя ни создать, ни уничтожить. Что вложили, то и получите на выходе. Второе начало, о котором говорил Эддингтон, устанавливает, что тепло (то есть энергия) переходит из более нагретого места в менее нагретое. Для полноты картины необходимо упомянуть и о третьем начале, которое гласит, что тело невозможно охладить до абсолютного нуля с помощью конечного числа операций. С каждым шагом вы можете чуть ближе подходить к абсолютному пределу холода, но никогда не сможете его достичь.