Таинственный геном человека - Фрэнк Райан 11 стр.


Один из 2500 детей, рожденных у родителей-европеоидов, страдает от муковисцидоза, что делает его самым распространенным наследственным заболеванием. Оно вызывается рядом мутаций, воздействующих на ген-регулятор CFTR (муковисцидозный трансмембранный регулятор), расположенный в области q31–32 седьмой хромосомы человека. Этот ген кодирует ионный канал, участвующий в переносе химических веществ через мембраны клеток. Муковисцидоз - это, пожалуй, самый известный пример болезни с аутосомно-рецессивным типом наследования. Однако существуют и другие заболевания, которые потенциально можно излечить добавлением одного "нормального" гена. Все эти болезни, включая муковисцидоз, являются объектами интенсивных современных исследований, направленных на создание генной терапии.

Еще один тип мутации ведет к возникновению заболеваний с рецессивным типом наследования через половые хромосомы. Женщины имеют две половые Х-хромосомы, а мужчины - только одну, наследуемую от матери. Это означает, что рецессивный ген, входящий в состав Х-хромосомы, зачастую не оказывает влияния на женщин, но при наследовании мужчиной превращается в доминантный. Мутации подобного рода вызывают гемофилию - заболевание, которое уничтожило не один королевский дом в Европе. Они же являются причиной цветовой слепоты, которая имеется у 7–10 % мужчин, и некоторых видов мышечной дистрофии.

Такие мутации, затрагивающие всего один ген, обычно наследуются в соответствии с законами Менделя. К ним относятся, например, ахондроплазия и болезнь Хатчинсона, наследуемые по аутосомно-доминантному типу, муковисцидоз с аутосомно-рецессивным типом наследования и заболевания, вызываемые изменениями в половых хромосомах. На сегодня ученые выявили более 5000 моногенных заболеваний, вызываемых мутациями. Некоторые мутации изменяют количество хромосом (как при синдроме Дауна), удаляют, копируют, фрагментируют или иным образом повреждают их структуру, что приводит к огромному количеству заболеваний. Как уже говорилось, мутации часто являются причиной рака, который обычно возникает в полностью развитых тканях через много лет после эмбриогенеза. Другие хромосомные аберрации затрагивают половые клетки, что может мешать правильному развитию плода и приводить к врожденным аномалиям или наследственным нарушениям обмена веществ. В таких случаях ясное понимание генетической причины (или причин) произошедшего необходимо как для профилактики, так и для лечения.

Медицинский подход к мутациям включает консультации с генетиками. Например, пара, которая хочет завести ребенка, но осознает риск развития у него определенных заболеваний, может получить всю необходимую информацию и принять решение на ее основе. Широко распространяется информация о рисках, связанных с повышением возраста материнства, облучением половых клеток и плода, принятием некоторых лекарств (например, талидомида), контактом с химическими веществами и вакцинацией против краснухи. Новые технологии, такие как преимплантационная генетическая диагностика, позволяют проводить генетический скрининг эмбрионов, состоящих всего из 16 или 32 клеток, и отбирать для имплантации самые здоровые. Сегодня для предсказания генетических отклонений применяется скрининг отдельных эмбриональных клеток. Подобные действия не только снижают вероятность развития серьезных осложнений у детей, на которых влияют факторы риска, но и позволяют прекратить распространение мутации в будущих поколениях. Разумеется, такая "позитивная форма евгеники" должна следовать множеству этических и моральных принципов, которые распространяются как на врачей, так и на пациентов.

Лечение онкологических заболеваний - еще одна область, в которой интенсивное изучение мутировавших генов дает надежду на разработку более эффективных технологий лечения. Здесь речь идет о более сложных генетических отклонениях, чем в случае с наследственными заболеваниями. Очень часто на развитие болезни влияют множественные мутации или факторы среды. На генетическом уровне рак включает несколько стадий развития, на которых возникают множественные мутации, воздействующие на регуляторные пути. Последние исследования показывают, что для развития рака эти мутации должны взаимодействовать между собой. Главной областью исследований на сегодня как раз и является природа такого взаимодействия и регуляторные пути, на функционировании которых оно сказывается. Расшифровка человеческого генома позволила с такой точностью увидеть генетические изменения, являющиеся предпосылками к раку, что американские онкологи Фогельштейн и Кинцлер даже заявили, что "рак, по сути, является генетическим заболеванием".

От 15 до 20 % женщин, страдающих от рака груди, имеют старших родственниц с тем же заболеванием, а 5 % всех случаев рака груди связывают с мутацией в генах BRCA1 и BRCA2 . Генетики предсказывают, что шанс развития рака груди на каком-то этапе жизни у женщин, имеющих подобные мутации, составляет 80 %. Сегодня существуют различные способы снижения этого риска - профилактическое удаление яичников, регулярное обследование и возможность оперативного вмешательства на ранних стадиях.

В 2006 году в Америке было проведено первое комплексное мультицентровое исследование более 13 тысяч генов из клеток, пораженных раком груди и прямой кишки. Располагая расшифровкой "здорового" человеческого генома, ученые смогли провести сравнительный анализ и выяснили, что отдельные опухоли содержат до 90 мутировавших генов. Судя по всему, лишь небольшая их часть играет активную роль в онкологических процессах (по оценкам исследователей, примерно 11 для каждого типа рака). Воодушевленный этими открытиями, Национальный институт здравоохранения США занялся составлением атласа раковых геномов ( The Cancer Genome Atlas Project, или TCGA ). Целью проекта является расшифровка генома каждого типа рака, поражающего человека, и выявление типичных для всех них генетических аномалий путем сравнения с геномом здорового человека. В пилотных исследованиях изучаются рак легкого, мозга и яичников. Этот проект вовсе не воздушный замок: рак уже сдает позиции по многим фронтам, сегодня некоторые его формы полностью излечимы хирургическим путем или с помощью лучевой, химио- и иммунотерапии. То, что когда-то считалось смертным приговором, превращается в хроническое, но контролируемое состояние.

7. Следующий логический шаг

Три главных компонента научных исследований - думать, говорить и делать; из них мне больше всего нравится последнее, и это я, наверное, делаю лучше всего. Думать я тоже умею неплохо, а вот говорить - не очень.

Фредерик Сэнджер

В конце 1960-х мне повезло стать студентом-медиком в Шеффилдском университете. Уотсон и Крик еще были относительно молоды, и их открытие было сделано всего 15 или 16 лет назад. Я помню ощущение чуда, когда преподаватели рассказывали нам о строении ДНК, и помню, как ясно и просто ее четырехбуквенный код расшифровывался в белки. У нас были лекции по генетике, на которых мы поняли, что мутации - важный шаг в понимании самых разных наследственных болезней, включая так называемые наследуемые ошибки метаболизма. Нам также рассказывали о важности этих открытий для родственной отрасли знания - эволюционной биологии. Припоминаю, как волновало меня понимание того, что биология и медицина вот-вот увидят мир совершенно по-другому, основываясь на более глубоком понимании ДНК и ее молекулярных вариаций. Это понимание, естественно, повлияет не только на ученых-биологов и врачей, но и на человечество в целом. Однако на том этапе многие важные вопросы еще оставались без ответов.

Вот один очевиднейший вопрос: как оплодотворенное яйцо (зигота) чудесным образом развивается в сложный организм - человеческого ребенка? Как эта удивительная молекула, ДНК, хранит не только наследственную информацию индивидуума, но и набор инструкций, по которому одна клетка, зигота, дает начало развитию эмбриона с самыми разными клетками, тканями и органами, из которых затем получается человеческое дитя?

Науке было многое известно о развитии тканей эмбриона, однако ученые очень мало знали о генетике, регулирующей соответствующие процессы. Работы в Институте Пастера (Франция) впервые приоткрыли завесу тайны: они дали нам понимание того, как гены активируются и деактивируются включением и выключением последовательности нуклеотидов - промотора. Это был первый шаг на пути к тому, что сегодня мы называем "регуляцией экспрессии генов".

В те времена мы уже знали, что клетки, из которых состоят различные ткани и органы человеческого тела (например, клетки мозга, или лимфоциты, борющиеся с инфекцией в нашей крови, или клетки, из которых состоят почки, печень, сердце или лёгкие), содержат в ядре одну и ту же ДНК. Разница в структуре и функциях этих клеток и, соответственно, формирование различных тканей и органов подразумевает, что должна быть какая-то разница в экспрессии генов. Здесь возникает вопрос, чем вызваны различия - разными генами или разницей в профилях или времени экспрессии одних и тех же генов?

На этом вопросы не заканчивались.

Каким бы ни было объяснение - отдельные гены для отдельных клеток или разные профили экспрессии одних и тех же генов, - все равно должна существовать система, которая решает, какой именно ген (или какой профиль) запустится для тех или иных клеток, тканей и органов. Это будет ключевым фактором в планировании и регулировании развития человеческого эмбриона. Скорее всего, схожие механизмы будут работать для эмбрионов всех животных, а может быть, даже для растений.

Вспомним Сиднея Бреннера, который вместе с Криком изучал трансляцию генов в белки в Кавендишской лаборатории. В 1973 году, работая в лаборатории Центра медицинских исследований в Лондоне, Бреннер опубликовал работу по этому вопросу. Она начиналась так: "Как гены могут определять сложные структуры высших организмов? Биология еще не знает ответа на этот важный вопрос". Он объяснял, что на данный момент многие молекулярные механизмы, ранее найденные у микробов, в таком же виде были найдены в эукариотических клетках - клетках животных и растений, в которых есть ядро. Генетический код оказался универсальным - и механизмы синтезирования белка по этому коду тоже. "Существует много объясняющих это теорий [как ДНК высших организмов контролирует регуляцию экспрессии генов], но вопрос в целом остается невыясненным". Бреннер выбрал другую модель, чтобы изучить, как устроены и организованы гены животных. В своей работе он рассказал об этой новой модели: миниатюрный круглый червь Caenorhabditis elegans длиной в миллиметр, обитающий в почве средних широт. C. elegans обладает рядом весьма привлекательных в рамках данного исследования черт. Червь не является паразитом и не заражает лаборантов; у него очень простая структура - всего 959 клеток; его легко разводить; он прозрачный и его легко рассмотреть под микроскопом; его геном состоит из всего пяти пар аутосом и одной пары гетерохромосом; у него два пола - гермафродиты и мужские особи.

Короче говоря, для генетиков червь представляет идеальный образец для экспериментов: его легко разводить, безопасно хранить в больших количествах и у него есть особи различных полов и генетика, которую легко изменять.

В своей работе Бреннер показывает, как в рамках экспериментов он вносил изменения в более чем 300 генов червя, чтобы показать, как эти изменения отразятся на его биологическом строении и поведении. Но даже на примере такого простого организма Бреннер увидел, что генетика его намного сложнее, чем он мог себе представить. На простые извивающиеся движения червя влияли 77 различных генов. Однако его дальнейшее изучение показало, что модель для эксперимента была выбрана правильно. Модель была способна на практике продемонстрировать, как работают гены, в частности, как они регулируют загадочные и сложные изменения, происходящие в процессе развития эмбриона, когда его стволовые клетки начинают меняться и формируют множество различных тканей и органов.

Модель Бреннера внушала надежду. Ею воспользовались во многих научных центрах. По мере того как знания становились более глубокими, вместо С. elegans , который когда-то заменил фруктовых мушек, ученые исследовали геном рыб, лягушек, ланцетников и млекопитающих (мышей), а также многих растений.

Человеческое тело состоит из более чем 200 различных типов клеток, формирующих конечности, ткани и органы, которые выполняют отдельные функции. Чтобы из зиготы сформировалось всё вышеуказанное, она должна состоять из так называемых тотипотентных клеток, которые могут развиться в любую ткань человеческого организма, включая плаценту и эмбриона. Первая дифференциация на этом этапе - из тотипотентных в плюрипотентные клетки. У последних есть множество вариантов развития, но они не превратятся в клетки внезародышевых органов. Плюрипотентные клетки - это клетки, из которых развиваются более сложные структуры и при дальнейшей дифференциации начинают формироваться различные ткани и органы. Эти же клетки, также называемые стволовыми, остаются в нашем организме на протяжении всей жизни, восстанавливая поврежденные ткани в постоянном круговороте, необходимом для нормального физиологического функционирования организма и его здоровья. Чтобы сделать возможной трансформацию эмбриона с такой удивительной точностью, каждая клетка должна "знать" о своей дальнейшей судьбе. Эта судьба определяется точно выверенной бюрократией генетического механизма, включая эпигенетическую регуляцию, о которой мы поговорим в следующей главе, а также сущности, известные как гены-регуляторы.

До конца 1980-х генетики, работавшие с фруктовыми мушками, открыли группу генов, которая отвечала за порядок расположения отдельных сегментов тела насекомого в процессе формирования эмбриона внутри яйца. Они назвали эту группу homeobox , или Hox . Дальнейшие исследования показали, что точно такой же набор генов Hox в том же порядке в определенной хромосоме играет очень важную роль в развитии эмбриона у животных. У человека план развития эмбриона, управляемый набором Hox , определяет правую и левую стороны, отвечает за нашу двустороннюю симметрию. Сравните наше строение с экзотическими морскими животными эхинодермами - к ним относятся, например, морские звезды и морские ежи. У них симметрия радиальная, как у долек апельсина или лепестков ромашки.

Человеческий эмбрион начинает развиваться из клеток зиготы, а набор генов Hox диктует ему, где будет голова, где на ней расположить глаза, нос и челюсти; позвонок за позвонком строится шея. Позвонок за позвонком двенадцать костей формируют грудную клетку с зачатками верхних конечностей и ребер. Точно так же формируются поясничные позвонки, которые будут поддерживать брюшную полость, и, наконец, крестцовый отдел позвоночника, который поддерживает таз и нижние конечности. Все располагается определенным образом относительно центральной оси нашего тела. Развитие набора генов Hox было важным шагом в эволюции животных. Их функция настолько важна, что они сохранялись неизменными в процессе естественного отбора на протяжении очень долгого времени. Например, хотя общий предок насекомых и человека жил в океанах 600 миллионов лет назад, если бы мы заменили Hox - ген в зиготе насекомого, отвечающий за расположение его глаз, на человеческий ген, глаз насекомого все равно развился бы правильно.

В Hox - генах закодированы белки, но не энзимы, они не участвуют в построении организма - кожи, почек, сердца, костей, а регулируют экспрессию генов (транскрипцию генов). Поэтому их также называют факторами транскрипции. Белки, закодированные Hox - генами, связаны с ключевыми нуклеотидными последовательностями в хромосомах (известны как гены-модификаторы), где они включают или выключают определенные гены. Со временем ученые открыли множество подобных генов-регуляторов, которые играют огромную роль в развитии эмбриона и функционировании человеческого организма на протяжении жизни. Ключевые гены вроде группы Hox запускают процесс из нескольких шагов развития, включающий сигнальные гормоны и факторы транскрипции. В подобных системах один ключевой ген может запускать много вторичных генов, которые в свою очередь запускают другие гены, образуя каскад из сотен генов, которые и определяют "путь развития". Это гарантирует, что определенная часть эмбриона станет мозгом, конечностью, почкой или ногтем на ноге. Если посмотреть внимательнее на структуру сложной ткани, например конечности или почки, мы увидим, что она состоит из разных более простых тканей и клеток. Так, нога состоит из кожи, мышц, костей, нервов и кровеносных сосудов, и чтобы она развивалась правильно, нужно координировать между собой множество процессов, возможно, с местными системами связи между отдельными тканями. Несрабатывание всего лишь одного компонента может привести к катастрофе. Талидомид, ранее продававшийся без рецепта, широко использовался для купирования тошноты при беременности в 1950–60-х годах. Несколько лет спустя около 10 тысяч детей родились с серьезными нарушениями в формировании конечностей - с так называемой фокомелией. Причиной трагедии с талидомидом было нарушение развития кровеносных сосудов в зачатках будущих конечностей.

Ко времени публикации работы Бреннера в начале 1970-х мы еще мало знали о том, как гены регулируют развитие человека. Конечно, мы знали, что мозг человека при рождении относительно неразвит, продолжает расти и развиваться еще два-три года жизни младенца. Мы знали об изменении желез в период полового созревания, однако не знали, как гены это регулируют. Теперь известно, что половое созревание включает в себя очень глубокие изменения на генетическом и эпигенетическом уровнях: фактически мы возвращаемся к бурному водовороту развития эмбриона. Сейчас генетики считают его главной и самой важной фазой постэмбрионального развития. В том, как гены регулируют изменения в пубертатный период, много похожего на удивительную трансформацию гусеницы в бабочку, поэтому некоторые ученые считают это вариацией метаморфоза.

В препубертатный период и мальчики и девочки имеют примерно одинаковые пропорции мышечной, костной и жировой массы. Однако после запуска мощных эпигенетических и генетических механизмов тело ребенка претерпевает значительные изменения, включая бурный рост и изменения в пропорциях мышечной и жировой массы, которые отличаются у обоих полов. К концу полового созревания у мужчин в полтора раза больше костной и мышечной массы, чем у женщин, а у женщин в два раза больше жировой ткани, чем у мужчин. Эти очевидные физические изменения сопровождаются также изменениями в клетках и тканях половых и относящихся к ним органов, например грудных желез у женщин и простаты у мужчин. Процесс полового развития запускается гормоном, сигнализирующим о необходимости производить гонадотропин (GnRH) , который вырабатывается гипоталамусом. Это, в свою очередь, стимулирует питуитарную железу. Она увеличивает выработку половых гормонов гонадотропинов, которые через кровеносную систему попадают в яичники или яички, где повышают уровень соответственно эстрогенов или андрогенов. Иногда подростки бывают капризными или нервными. Это и неудивительно, ведь в их теле происходят гормональные изменения невероятного масштаба. Мы только недавно узнали, что в пубертатный период под влиянием гормонов происходит своего рода перезапись нейронных цепей мозга и поведение меняется на взрослое.

Назад Дальше