4. аллостерические ферменты катализируют ключевые реакции данного метаболического пути.
Регуляция каталитической активности ферментов белок-белковыми взаимодействиями.
Некоторые ферменты изменяют свою каталитическую активность в результате белок-белковых взаимодействий.
Различают 2 механизма активации ферментов с помощью белок-белковых взаимодействий:
1. активация ферментов в результате присоединения регуляторных белков;
2. изменение каталитической активности ферментов вследствие ассоциации или диссоциации протомеров фермента.
Регуляция каталитической активности ферментов путём фосфорилирования/дефосфорилирования.
В биологических системах часто встречается механизм регуляции активности ферментов с помощью ковалентной модификации аминокислотных остатков. Быстрый и широко распространённый способ химической модификации ферментов – фосфорилирование/дефосфорилирование. Модификации подвергаются ОН-группы фермента. Фосфорилирование осуществляется ферментами протеинкиназами, а дефосфорилирование – фосфопротеинфосфатазами. Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными.
Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.
Некоторые ферменты, функционирующие вне клеток (в ЖКТ или в плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определённых пептидных связей, что приводит к отщеплению части белковой молекулы предшественника. В результате в оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента (трипсиноген – трипсин).
Ферменты плазмы крови
По происхождению ферменты плазмы крови можно подразделить на 3 группы.
1. Собственные ферменты плазмы крови (секреторные). Они образуются в печени, но проявляют своё действие в крови. К ним относятся ферменты свертывающей системы крови – протромбин, проакцелерин, проконвертин, а также церулоплазмин, холинэстераза.
2. Экскреторные ферменты – попадают в кровь из различных секретов – дуоденального сока, слюны и т.д. К ним относятся амилаза, липаза.
3. Клеточные ферменты – попадают в кровь при повреждениях или разрушениях клеток или тканей.
Таблица 4.1. Органоспецифические ферменты (изоферменты)
Фермент (изофермент) | Орган, при повреждении которого, активность фермента в крови увеличивается |
---|---|
ЛДГ1 | миокард |
ЛДГ2 | |
ЛДГ3 | легкие |
ЛДГ4 | печень, мышцы |
ЛДГ5 | |
Амилаза | поджелудочная железа |
АЛТ | печень |
АСТ | миокард |
кислая фосфатаза | простата |
щелочная фосфатаза | кости |
Энзимопатии
В основе многих заболеваний лежат нарушения функционирования ферментов в клетке – энзимопатии. Приобретённые энзимопатии, как и вообще протеинопатии, по-видимому, наблюдают при всех болезнях.
При первичных энзимопатиях дефектные ферменты наследуются, в основном, по аутосомно-рецессивному типу. Гетерозиготы, чаще всего, не имеют фенотипических отклонений. Первичные энзимопатии обычно относят к метаболическим болезням, так как происходит нарушение определённых метаболических путей. При этом развитие заболевания может протекать по одному из ниже перечисленных "сценариев". Рассмотрим условную схему метаболического пути:
Е1 Е2 Е3 Е4
А → В → С → D → Р
Вещество А в результате последовательных ферментативных реакций превращается в продукт Р. При наследственной недостаточности какого-либо фермента, например фермента Е3, возможны разные нарушения метаболических путей:
Нарушение образования конечных продуктов.
Недостаток конечного продукта этого метаболического пути (при отсутствии альтернативных путей синтеза) может приводить к развитию клинических симптомов, характерных для данного заболевания.
Клинические проявления. В качестве примера можно рассмотреть альбинизм. При альбинизме нарушен синтез в меланоцитах пигментов – меланинов. Меланин находится в коже, волосах, радужке, пигментном эпителии сетчатки глаза и влияет на их окраску. При альбинизме наблюдают слабую пигментацию кожи, светлые волосы, красноватый цвет радужки глаза из-за просвечивающих капилляров. Проявление альбинизма связано с недостаточностью фермента тирозингидроксилазы (тирозиназы) – одного из ферментов, катализирующего метаболический путь образования меланинов.
Накопление субстратов-предшественников.
При недостаточности фермента будут накапливаться определенные вещества, а также во многих случаях и предшествующие им соединения. Увеличение субстратов-предшественников дефектного фермента – ведущее звено развития многих заболеваний.
Клинические проявления. Известно заболевание алкаптонурия, при котором нарушено окисление гомогентизиновой кислоты в тканях (гомогентизиновая кислота – промежуточный метаболит катаболизма тирозина). У таких больных наблюдают недостаточность фермента окисления гомогентизиновой кислоты – диоксигеназы гомогентизиновой кислоты, приводящей к развитию заболевания. В результате увеличиваются концентрация гомогентизиновой кислоты и выведение её с мочой. В присутствии кислорода гомогентизиновая кислота превращается в соединение чёрного цвета – алкаптон. Поэтому моча таких больных на воздухе окрашивается в чёрный цвет. Алкаптон также образуется и в биологических жидкостях, оседая в тканях, коже, сухожилиях, суставах. При значительных отложениях алкаптона в суставах нарушается их подвижность.
Нарушение образования конечных продуктов и накопление субстратов-предшественников.
Отмечают заболевания, когда одновременно недостаток продукта и накопление исходного субстрата вызывают клинические проявления.
Клинические проявления. Например, у людей с болезнью Гирке (гликогеноз I типа) наблюдают снижение концентрации глюкозы в крови (гипогликемия) в перерывах между приёмами пищи. Это связано с нарушением распада гликогена в печени вследствие дефекта фермента глюкозо-6-фосфатазы. Одновременно у таких людей увеличиваются размеры печени (гепатомегалия) вследствие накопления в ней не используемого гликогена.
Применение ферментов в медицине
Ферментные препараты широко используют в медицине. Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств.
Кроме того, ферменты используют в качестве специфических реактивов для определения ряда веществ. Так, глюкозооксидазу применяют для количественного определения глюкозы в моче и крови. Фермент уреазу используют для определения содержания количества мочевины в крови и моче. С помощью различных дегидрогеназ обнаруживают соответствующие субстраты, например пируват, лактат, этиловый спирт и др.
Энзимодиагностика
Энзимодиагностика заключается в постановке диагноза заболевания (или синдрома) на основе определения активности ферментов в биологических жидкостях человека.
Принципы энзимодиагностики основаны на следующих позициях:
1. при повреждении клеток в крови или других биологических жидкостях (например, в моче) увеличивается концентрация внутриклеточных ферментов повреждённых клеток;
2. количество высвобождаемого фермента достаточно для его обнаружения;
3. активность ферментов в биологических жидкостях, обнаруживаемых при повреждении клеток, стабильна в течение достаточно длительного времени и отличается от нормальных значений;
4. ряд ферментов имеет преимущественную или абсолютную локализацию в определённых органах (органоспецифичность);
5. существуют различия во внутриклеточной локализации ряда ферментов.
Применение ферментов в качестве лекарственных средств
Использование ферментов в качестве терапевтических средств имеет много ограничений вследствие их высокой иммуногенности.
Тем не менее энзимотерапию активно развивают в следующих направлениях:
1. заместительная терапия – использование ферментов в случае их недостаточности;
2. элементы комплексной терапии – применение ферментов в сочетании с другой терапией.
Заместительная энзимотерапия эффективна при желудочно-кишечных заболеваниях, связанных с недостаточностью секреции пищеварительных соков. Например, пепсин используют при ахилии, гипо- и анацидных гастритах. Дефицит панкреатических ферментов также в значительной степени может быть компенсирован приёмом внутрь препаратов, содержащих основные ферменты поджелудочной железы (фестал, энзистал, мезим-форте и др.).
В качестве дополнительных терапевтических средств ферменты используют при ряде заболеваний. Протеолитические ферменты (трипсин, химотрипсин) применяют при местном воздействии для обработки гнойных ран с целью расщепления белков погибших клеток, для удаления сгустков крови или вязких секретов при воспалительных заболеваниях дыхательных путей. Ферментные препараты стали широко применять при тромбозах и тромбоэмболиях. С этой целью используют препараты фибринолизина, стрептолиазы, стрептодеказы, урокиназы.
Фермент гиалуронидазу (лидазу), катализирующий расщепление гиалуроновой кислоты, используют подкожно и внутримышечно для рассасывания рубцов после ожогов и операций (гиалуроновая кислота образует сшивки в соединительной ткани).
Ферментные препараты используют при онкологических заболеваниях. Аспарагиназа, катализирующая реакцию катаболизма аспарагина, нашла применение для лечения лейкозов.
Предпосылкой антилейкемического действия аспарагиназы послужило обнаружение в лейкозных клетках дефектного фермента аспарагинсинтетазы, катализирующего реакцию синтеза аспарагина.
Лейкозные клетки не могут синтезировать аспарагин и получают его из плазмы крови. Если имеющийся в плазме аспарагин разрушать введением аспарагиназы, то в лейкозных клетках наступит дефицит аспарагина и в результате – нарушение метаболизма клетки и остановка прогрессирования заболевания.
Иммобилизованные ферменты – это ферменты, связанные с твердым носителем или помещенные в полимерную капсулу.
Для иммобилизации ферментов используют два основных подхода:
1. Химическая модификация фермента.
2. Физическая изоляция фермента в инертном материале.
Часто для иммобилизации ферментов используют капсулы из липидов – липосомы, которые легко проходят через мембраны и оказывают необходимые эффекты внутри клетки.
Преимущества иммобилизованных ферментов:
1. Легко отделяются от реакционной среды, что позволяет использовать фермент повторно. Продукт не загрязнен ферментом.
2. Ферментативный процесс можно осуществлять непрерывно.
3. Повышается стабильность фермента.
Иммобилизированные ферменты можно использовать для аналитических и препаративных целей. Существуют несколько типов устройств, где иммобилизированные ферменты применяются в аналитических целях – ферментные электроды, автоматические анализаторы, тест-системы и т.д.
Препаративное использование иммобилизованных ферментов в промышленности:
1. Получение L-аминокислот с помощью аминоацилазы.
2. Получение сиропов с высоким содержанием фруктозы с использованием глюкозоизомеразы.
3. Обработка молока.
Глава 5. Структура и функции нуклеиновых кислот
Нуклеиновые кислоты – это биополимеры, состоящие из нуклеотидов и выполняющие функцию хранения, передачи и реализации генетической информации. Впервые обнаружены Фридрихом Мишером в 1869 г. в клетках, богатых ядерным материалом.
Мономерами нуклеиновых кислот являются нуклеотиды. Каждый нуклеотид содержит 3 компонента: гетероциклическое азотистое основание, моносахарид (пентозу) и остаток фосфорной кислоты. В состав нуклеиновых кислот входят азотистые основания двух типов: пуриновые – аденин (А), гуанин (Г) и пиримидиновые – цитозин (Ц), тимин (Т) и урацил (У). Кроме главных азотистых оснований в нуклеиновых кислотах присутствуют небольшие количества нетипичных (минорных) оснований (псевдоуридин, дигидроуридин, метиладенозин и др.).
Нуклеотиды, в которых пентоза представлена рибозой, называют рибонуклеотидами, а нуклеиновые кислоты, построенные из рибонуклеотидов, рибонуклеиновыми кислотами, или РНК. В молекулы РНК входят аденин, урацил, гуанин и цитозин. Нуклеиновые кислоты, в мономеры которых входит дезоксирибоза, называют дезоксирибонуклеиновыми кислотами, или ДНК. В ее состав входят аденин, тимин, гуанин и цитозин. Молекулы ДНК, как правило, состоят из 2 полинуклеотидных цепей, РНК в основном представляют собой одноцепочечные структуры.
Молекулы нуклеиновых кислот всех типов живых организмов – линейные полимеры, не имеющие разветвлений. Роль мостика между нуклеотидами выполняет 3,5'-фосфодиэфирная связь, соединяющая пентозы нуклеотидов. В связи с этим полинуклеотидная цепь имеет определенную направленность. На одном её конце находится 5'-ОН группа, этерифицированная остатком фосфорной кислоты (начало цепи), на другом – свободная 3'-ОН-группа (конец цепи). Последовательность нуклеотидов в полинуклеотидной цепи формирует первичную структуру нуклеиновой кислоты. Углеводно-фосфатный остов цепи представляет собой неспецифический компонент нуклеотида. Функционально значащей является последовательность азотистых оснований, уникальная для каждой молекулы. Это обуславливает большое разнообразие индивидуальных ДНК и РНК. В то же время нуклеиновые кислоты обладают видовой специфичностью, т.е. характеризуются определенным нуклеотидным составом у каждого биологического вида. В клеточных организмах присутствуют оба типа нуклеиновых кислот; вирусы содержат нуклеиновую кислоту лишь одного типа – ДНК или РНК.
Биологическая роль нуклеиновых кислот заключается в хранении, реализации и передаче генетической информации. Возможно, что нуклеиновые кислоты обеспечивают различные виды биологической памяти – иммунологическую, нейрологическую и т.д., а также играют существенную роль в регуляции биосинтетических процессов.
Структура и функции ДНК
ДНК имеет первичную, вторичную и третичную структуры. Первичная структура ДНК – порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинуклеотидной цепи. Сокращенно эту последовательность записывают с помощью однобуквенного кода от 5' к 3' концу, например 5'-А-Г-Ц-Т-Т-А-Ц-А-3'. Первичная структура строго специфична и индивидуальна для каждой природной ДНК и представляет кодовую форму записи биологической информации (генетический код). Впервые доказательство генетической роли ДНК получено в 1944 г. Освальдом Эйвери с сотрудниками в опытах по трансформации, осуществленных на бактериях. Содержание нуклеотидов в ДНК, подчиняется закономерностям, выявленным Эрвином Чаргафом (1950): суммарное количество пуриновых оснований равно сумме пиримидиновых, причем количество А равно количеству Т, а количество Г – количеству Ц. Эти закономерности определяются особенностями вторичной структуры ДНК.
Вторичная структура ДНК представляет собой спираль, состоящую из двух антипараллельных полинуклеотидных цепей, закрученных относительно друг друга и вокруг общей оси. Все основания цепей ДНК расположены стопкой внутри двойной спирали, а пентозофосфатный остов – снаружи. Полинуклеотидные цепи удерживаются друг относительно друга за счет водородных связей между комплементарными основаниями. Дополнительная стабилизация спирали происходит за счет гидрофобных взаимодействий, возникающих между азотистыми основаниями в стопке. Выяснение вторичной структуры ДНК (Д. Уотсон, Ф. Крик, 1953) стало одним из величайших открытий в естествознании, так как позволило раскрыть механизм передачи наследственной информации в ряду поколений.
Третичная структура ДНК различается у прокариотических и эукариотических организмов. У бактерий и вирусов, а также в митохондриях и хлоропластах эукариот ДНК имеют либо линейную, либо кольцевую форму, двух- или одноцепочечную. Двухцепочечные ДНК легко переходят в суперспирализованное состояние в результате дополнительного скручивания в пространстве двухспиральной молекулы.
Третичная структура ДНК эукариотических клеток также выражена в многократной суперспирализации молекулы, однако, в отличие от прокариот, она осуществляется в форме комплексов ДНК с гистоновыми и негистоновыми белками. Такие дезоксинуклеопротеины называются хроматином.
Выделяют следующие уровни упаковки хроматина (Рис 5.1):
1. Нуклеосомный. Четыре гистона Н2А, Н2В, Н3 и Н4 (по 2 каждого типа) образуют октамерный белковый комплекс, который называют нуклеосомным кором. Молекула ДНК накручивается на поверхность этого кора, совершая 1,75 оборота (около 146 пар нуклеотидов). Такой комплекс гистоновых белков с ДНК является основной структурной единицей хроматина и называется нуклеосомой. ДНК, соединяющую нуклеосомные частицы, называют линкерной ДНК. С нею связываются молекулы гистона Н1, защищая эти участки от действия нуклеаз.
2. Соленоидный. Нуклеосомная нить скручивается в более толстые фибриллы – соленоиды. Их также называют хроматиновыми фибриллами.
3. Петлевой. Соленоидная фибрилла образует петли и дополнительно упаковывается.