Предположение о том, что глаз со всеми его несравненными приспособлениями для фокусировки на различные расстояния, для пропускания различного количества света, для корректировки сферической и цветовой аберрации мог быть сформирован в результате естественного отбора, признаюсь откровенно, кажется в высочайшей степени абсурдным. Тем не менее здравый смысл говорит мне, что если будет доказано, что существуют многочисленные градации от совершенного и сложного глаза до глаза весьма несовершенного и простого, притом что каждая градация окажется полезной для ее обладателя (а это, несомненно, так и есть); если, далее, глаз понемногу изменяет свое строение и эти изменения наследуются (что также несомненно); если любая вариация или модификация этого органа оказывается полезной для животного в изменяющихся условиях его жизни – тогда препятствие, мешающее нам поверить, что совершенный и сложно построенный глаз мог сформироваться путем естественного отбора, хотя и непреодолимое для нашего воображения, едва ли можно считать существующим в действительности.
Дарвин не мог знать, что у микроорганизмов имеется несколько типов органов, чувствительных к свету. В глазах животных присутствует пигмент ретиналь (получаемый из витамина А), связанный с белком опсином . Опсины составляют весьма обширное семейство белков, которые все имеют одинаковое базовое строение – семь спиралей, охватывающих клеточную мембрану. У животных белок, содержащий ретиналь, является светочувствительным датчиком, но очень похожие пигменты, связанные с другими белками-опсинами, найдены также у многих микроорганизмов. Эти пигменты, родопсины , чрезвычайно распространены во всем Мировом океане. Произошли ли эти два пигментно-белковых комплекса от одного общего предка? По всей видимости, ответ отрицательный. Опсины, судя по всему, эволюционировали независимо и по меньшей мере в два отдельных временных периода. У прокариотов и некоторых одноклеточных эукариотов они часто служат для подкачки протонов, используемых для генерации электрического градиента по разные стороны клеточной мембраны. Эти пигментно-белковые комплексы также имеют семь трансмембранных спиралей, но их аминокислотные последовательности совершенно не похожи на опсины в глазах животных. У микроорганизмов этот пигментно-белковый комплекс используется для выработки энергии. При помощи родопсинов микроорганизмы продвигают протоны через свои клеточные мембраны. Протоны вытекают через вращающийся фактор сопряжения, позволяя клетке синтезировать АТФ при наличии света. Однако те же самые пигментно-белковые комплексы могут также действовать как светочувствительные датчики. У многих одноклеточных эукариотов родопсины дают клетке возможность плыть в направлении света определенных цветов. Этот пигмент большей частью сохранился и был вновь использован в совокупности с другими белками, обладающими примечательно сходным строением, у широкого круга одноклеточных эукариотов, а позднее и у животных, где он был связан с еще одним белком.
Стигмы, или глазки, найденные у нескольких типов одноклеточных водорослей, представляют собой примитивные оптические датчики, содержащие родопсины. Гены этих опсинов, по-видимому, передавались горизонтальным путем через несколько микробиотических линий. Опсины найдены также у кораллов, где эти пигментно-белковые комплексы ощущают свет, и это служит животному знаком для начала размножения. В процессе эволюции настоящего глаза, способного не только чувствовать свет, но также фокусироваться на изображении, родопсины подобного типа образуют прослойки внутри мембран. Линза, состоящая из коллагена, исполняет роль оптического "объектива", соединенного с сенсорными системами, в свою очередь связанными с мозгом – сложным органом, способным регистрировать изображения и сравнивать их с предыдущими записями. При эмбриологическом развитии позвоночных глаза формируются как непосредственное продолжение мозга.
Как уже говорилось, все живые клетки поддерживают электрический градиент по разные стороны своей клеточной мембраны. Этот градиент играет важнейшую роль в транспортировке питательных веществ из окружающей среды внутрь клетки и отходов жизнедеятельности из клетки обратно в окружающую среду, но также действует и в качестве сенсорной системы, позволяя клеткам ощущать градиенты освещения, температуры или содержания питательных веществ. У животных развились специальные клетки – нейроны , координирующие поведение посредством передачи электрической энергии. В процессе эволюции животных сенсорные системы, такие как органы вкуса, обоняния и зрения, также генерировали электрический сигнал и должны были быть скоординированы с движением, чтобы животное могло ловить добычу, совокупляться с животными противоположного пола своего вида, убегать от хищников и учиться.
Эти основные функции, насущные для выживания любого животного, унаследованы от клеточных мембран, сформировавшихся за миллиарды лет до них. Однако для создания внутри животных "электропроводки" и мозга были необходимы значительные обновления. Клетка должна была наладить селекцию информации, то есть научиться включать "рубильник" для генерирования электрического разряда и передачи сигнала по "проводам" всего лишь на мгновение. Сигнал должен был иметь направленность – пересылаться по проводу только в один конец, но не в другой. И кроме того, клетка должна была уметь передавать сигнал другой клетке, чтобы расширять или координировать коммуникационную сеть, а это требовало развития химической коммуникационной системы. Химические сигналы основываются на простых молекулах, многие из которых произошли от аминокислот, и такая коммуникационная система в животных клетках строится на основе кворумного восприятия у микроорганизмов. Все эти эволюционные новшества привели к созданию нервной системы и в конечном счете мозга, который собирал информацию и контролировал пути передачи сигнала в двухстороннем режиме – и ощущая, и отвечая на сигналы.
По мере продолжения эволюционного процесса у животных нервная система и мозг становились все более сложными. Эти свойства являются эмерджентными , то есть непредвиденными. Они развивались аналогично разработке первых компьютеров: сначала они работали медленно и имели очень небольшую память, но по мере накопления навыков ученые и разработчики стали создавать все более быстрые, компактные, дешевые и гораздо более сложные системы. Такой же процесс происходил и с нервной системой у животных, и он привел к глобальным изменениям образа жизни планеты. Однако до того как мы углубимся в этот вопрос, необходимо разобраться с концепцией симбиоза на планетарном уровне.
Эволюция животных, судя по всему, опережала эволюцию наземных растений приблизительно на 200 млн лет; тем не менее обе группы организмов развивались весьма сходными путями. Предком наземных растений была определенная группа зеленых водорослей; они начали завоевывать сушу около 450 млн лет тому назад. Лишенные постоянного источника воды и питательных веществ, эти пионеры растительной жизни были вынуждены развить у себя ряд новых особенностей, позволивших им выжить в жестких, засушливых наземных условиях. Подобно животным, растения изобрели нечто наподобие клея, обеспечивавшего сцепление клеток друг с другом, но в данном случае основой для клея послужил полисахарид целлюлоза , без труда вырабатываемый растениями. Для производства целлюлозы не требуется ни азота, ни фосфора – только углерод, кислород и водород, в избытке имеющиеся в окружающей среде. Кроме того, целлюлоза и ее производные устойчивы к разрушению большинством микроорганизмов. Животные не могут переваривать бумагу – в их кишечнике на это способны лишь несколько отдельных микроорганизмов. Целлюлоза дала растениям структуру, поддерживающую их на суше; когда же наземное растение погибает, некоторая часть целлюлозы включается в состав почвы, а другая часть смывается в океан, где включается в состав донных отложений.
Так же как и в случае с погребенными одноклеточными фотосинтезирующими эукариотами за 500 млн лет до этого, эволюция и гибель наземных растений повысила содержание кислорода в земной атмосфере – и намного. Наземные растения тоже стали биологическими большевиками своего времени. Вычислено, что благодаря возникновению и гибели крупных наземных растений – предшественников современных деревьев – концентрация кислорода в земной атмосфере 350 млн лет тому назад была приблизительно на 35 %, а то и на 67 % выше, чем в настоящий момент. Каковы же были последствия?
Повышение содержания атмосферного кислорода привело к массовому заселению суши морскими животными. Черви, ракообразные, улитки и позвоночные животные благополучно выползли на берег и принялись заселять новый ландшафт. В отличие от возникновения растительной жизни, появление на суше животных было результатом многократных вторжений множества различных морских организмов. За исключением самых древних животных форм – губок, медуз и их родственников – почти всем представителям животного мира удалось успешно колонизировать сушу.
Повышение содержания атмосферного кислорода, подстегиваемое развитием наземных растений, позволило животным ввести у себя некоторые новшества. Ракообразные и их родственники эволюционировали в насекомых. У насекомых кислород поставляется посредством диффузии через небольшие отверстия вдоль боков тела. В ископаемых этого периода найдены останки стрекоз с размахом крыльев в полметра. Такие крупные насекомые могли существовать только в условиях чрезвычайно высоких концентраций кислорода. Древнейшие наземные рыбы в конечном счете эволюционировали в земноводных и пресмыкающихся и, гораздо позднее, в динозавров (включая птиц) и млекопитающих. Но это потребовало введения еще нескольких поправок. Хотя морские животные уже разработали у себя системы транспортировки кислорода к внутренним органам, благодаря чему стали больше и сложнее, такая система циркуляции не смогла бы с той же легкостью функционировать на суше ввиду больших потерь жидкости. Диффузия кислорода в воде происходит медленно, но зато организмы могут получать его посредством прямого обмена через клетки или через специальные органы, такие как жабры, имеющие чрезвычайно большую площадь поверхности. В воздухе такие системы газообмена не могут быть столь же эффективны – организм очень быстро лишится воды. Чтобы справиться с этой проблемой, газообменные процессы были переведены внутрь организма, а внешние поверхности изменены так, чтобы препятствовать воде попросту диффундировать в окружающую среду. Далее газообмен был ускорен посредством циркуляционной системы, в которой участвовала жидкость, транспортировавшая кислород в отдаленные части организма. Для такой системы требовался некий насос, чтобы сделать процесс газообмена эффективным, – и вместо скоординированной системы снабженных жгутиками клеток, перекачивающих жидкость, как у губок, из одиночных клеток были собраны молекулярные моторы для выполнения специализированных клеточных функций, в особенности в мышечных и нервных тканях.
Мышцы используют огромные количества АТФ для ежесекундного перемещения миллиардов молекул миозина по их актиновым направляющим. Нейроны затрачивают огромное количество энергии для работы своих клеток. В сравнении с микроорганизмами животные представляют собой биологический эквивалент гигантского авиалайнера в мире велосипедистов-любителей. Это может показаться парадоксом: если мы возьмем любое животное и измерим его энергопотребление, оно окажется гораздо ниже, чем если бы данный организм был размазан по гигантской чашке Петри слоем толщиной в одну клетку. Причина в том, что отдельные клетки у животных в конечном счете ограничены диффузией кислорода. Тем не менее общая выработка энергии у животных чрезвычайно высока, даже у холоднокровных, таких как черепахи или змеи. У очень активных животных, температура тела которых выше, таких как птицы и млекопитающие, энергетические потребности в четыре – восемь раз больше, чем у рептилий.
Все животные в энергетическом отношении зависят от фотосинтезирующих организмов. В океанах львиная доля питательных веществ приходится на фитопланктон, добывать который большинству крупных животных очень нелегко. Поэтому энергетические запасы фитопланктона доставляются к ним посредством более мелких организмов, таких как мелкие рачки и креветкообразные организмы – зоопланктон. Такое посредничество имеет свою цену: после каждого переноса энергии вверх по пищевой цепи на следующий трофический уровень остается всего лишь около 10 % энергии. К примеру, 100 фунтов фитопланктона приведет к образованию около 10 фунтов зоопланктона, а этих 10 фунтов зоопланктона хватит на образование всего лишь примерно 1 фунта рыбы. В океанах концентрация фитопланктона выше всего в тех местах, где питательные вещества из глубоководья поднимаются к поверхности, чаще всего благодаря ветровым течениям. Эти области подъема глубоководных вод встречаются вдоль континентальных окраин и в мелководных морях – вот почему в таких местах наиболее распространен рыболовный промысел. Однако в результате средний срок жизни клетки фитопланктона составляет пять дней. Все клетки делятся приблизительно раз в пять дней, и одна из дочерних клеток оказывается съеденной. В океанах содержится всего лишь около 0,2 % планетарной фотосинтетической биомассы. На суше же большая часть остальных 99,8 % фотосинтетической биомассы не съедается – листья в основном остаются на деревьях. Однако на суше действует тот же закон трофического переноса вещества, что и в океане: сотня фунтов травы дает около десяти фунтов лошади. Впрочем, поскольку травостой, как правило, имеет высокую скорость роста и большую плотность, бизоны смогли стать крупными животными и сформировать многочисленные стада. Число трофических звеньев в наземных экосистемах в целом меньше, чем в океанах, и эволюция трав предоставила значительное преимущество для эволюции крупных млекопитающих за последние 50 млн лет.
Избыток доступных источников энергии привел к серьезной перестройке органов чувств – в соревновательных целях и в качестве ответной реакции на развитие моторов; это произошло в форме эволюции сенсорных систем обоняния, зрения, вкуса и слуха. Животные развивали у себя все более сложные системы выбора съедобных растений или доступной добычи, а у растений развивались все более сложные системы, использующие не только отходы жизнедеятельности животных для собственного роста, но и самих животных для опыления цветов и распространения семян. Совместная эволюция растений с растениями, растений с животными и животных с животными привела к развитию адаптивной системы все возрастающей сложности и увеличению числа взаимодействий.
Для того чтобы поддерживать в стабильности систему с возрастающей сложностью, необходимо, чтобы каждый вид со временем адаптировался, иначе его старые эволюционные свойства окажутся устаревшими и вид вымрет. Почему? Потому что среда в масштабе геологического времени постоянно меняется, и естественный отбор действует так же постоянно.
Американский эколог-эволюционист Ли ван Вален в 1973 году в шутку назвал представление о том, что организмы непрерывно эволюционируют, "гипотезой Черной Королевы", памятуя об одном из эпизодов "Алисы в Зазеркалье" . Исходная предпосылка ван Валена заключалась в том, что каждый конкретный вид должен "бежать на месте", чтобы поддерживать свой эволюционный тонус. Дубы, которые мы видим сегодня, не похожи на те дубы, что росли пять миллионов лет назад. Это ведет к эволюционной игре в кошки-мышки и к поддержанию разнообразия посредством относительно постепенного продвижения биологических инноваций в постоянно меняющемся экологическом ландшафте.
Биологическое разнообразие организмов имеет критическое значение для переноса генов, кодирующих ключевые, необходимые для поддержания жизни наномеханизмы, через обширные промежутки геологического времени, чреватые экзистенциальными угрозами. Однако само разнообразие также со временем меняется, и эволюция тех или иных конкретных свойств обладает способностью к адаптации лишь на протяжении коротких периодов в истории планеты. Организмы – преходящие сосуды, которыми можно пренебречь. Гены – отнюдь нет.
Один организм, появившийся в истории планеты случайно, но прошедший отбор благодаря некоторым очень специфическим чертам, очень быстро, в совсем недавнем прошлом, добился доминирующей позиции и взялся за разрушение планеты в масштабах, невиданных со времен Кислородной катастрофы 2,4 млрд лет тому назад или эволюции наземных растений около 400 млн лет тому назад. По соседству с крупными организмами со сложной системой взаимодействий люди стали новыми животными на планете и очень быстро стали новыми эволюционными большевиками. Мы склонны считать, что настолько отличаемся от других организмов, что можем игнорировать историю нашей планеты. Но так ли это?
"– У нас, – сказала Алиса, с трудом переводя дух, – когда долго бежишь со всех ног, непременно попадёшь в другое место.
– Какая медлительная страна! – вскричала Королева. – Ну а здесь, знаешь ли, приходится бежать со всех ног, чтобы только остаться на том же месте". – Примеч. пер .
Глава 9. Хрупкие виды
Когда я был маленьким, мой отец летом часто водил меня гулять в Риверсайд-парк, который находился в пятнадцати минутах ходьбы от нашего дома в муниципальном микрорайоне Гарлема. Более чем за пятьдесят лет до рождения моего отца, в 1901 году, Риверсайд-парк представлял собой большое кладбище. Оно было официально открыто в 1842 году распоряжением муниципалитета города Нью-Йорка в связи с увеличением смертности, связанным с эпидемиями холеры, оспы и брюшного тифа, что привело к переполнению кладбищ ближе к центру города. И хотя распоряжение позднее позволило городу использовать Риверсайд-парк как место массового захоронения солдат, погибших в гражданской войне, имелся прецедент погребения усопших в этой земле более чем за сто лет до названного времени.
В незаметном тихом уголке, как раз напротив мавзолея генерала Гранта, стоит небольшой памятник, посвященный "возлюбленному чаду", умершему в 1797 году в возрасте пяти лет. Место погребения отмечено обнесенным оградой гранитным монументом в память Сент-Клэра Поллока. Могила находится на выступе берега, откуда открывается вид на Гудзон и береговые утесы Палисадов Нью-Джерси. В 1797 году это место, несомненно, было великолепным для упокоения – панорама, должно быть, была одной из прекраснейших во всем мире.
Я был очень болезненным ребенком и однажды провел шесть месяцев в больнице. Я выжил и с тех пор почти не болел, но потом часто вспоминал могилу "возлюбленного чада" и размышлял о том, почему раньше дети так часто умирали в столь нежном возрасте. Также я часто думал о том, как мне повезло, что я не умер в той больнице.